Validate Binary Search Tree

2013.12.31 18:48

Given a binary tree, determine if it is a valid binary search tree (BST).

Assume a BST is defined as follows:

  • The left subtree of a node contains only nodes with keys less than the node's key.
  • The right subtree of a node contains only nodes with keys greater than the node's key.
  • Both the left and right subtrees must also be binary search trees.

confused what "{1,#,2,3}" means? > read more on how binary tree is serialized on OJ.

OJ's Binary Tree Serialization:

The serialization of a binary tree follows a level order traversal, where '#' signifies a path terminator where no node exists below.

Here's an example:

   1
  / \
 2   3
    /
   4
    \
     5

The above binary tree is serialized as "{1,2,3,#,#,4,#,#,5}".

Solution:

  The inorder traversal of a BST is a sorted array, that's how my code verified the tree.

  Perform an inorder traversal and see if the result is sorted. If so, valid; otherwise, no. An extra array is needed to hold the inorder traversal result.

  Time complexity and space complexity are both O(n), where n is the number of nodes in a tree.

Accepted code:

 1 // 1WA, 1CE, 1AC
 2 /**
 3  * Definition for binary tree
 4  * struct TreeNode {
 5  *     int val;
 6  *     TreeNode *left;
 7  *     TreeNode *right;
 8  *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 9  * };
10  */
11 class Solution {
12 public:
13     bool isValidBST(TreeNode *root) {
14         // IMPORTANT: Please reset any member data you declared, as
15         // the same Solution instance will be reused for each test case.
16         if(root == nullptr){
17             return true;
18         }
19         arr.clear();
20         // 1WA here, the in-order traversal of BST is sorted.
21         inorderTraversal(root);
22         
23         int i, n;
24         
25         n = arr.size();
26         for(i = 0; i < n - 1; ++i){
27             if(arr[i] >= arr[i + 1]){
28                 break;
29             }
30         }
31         arr.clear();
32         
33         return (i == n - 1);
34     }
35 private:
36     vector<int> arr;
37     
38     void inorderTraversal(TreeNode *root) {
39         // 1CE, null or nullptr...
40         if(root == nullptr){
41             return;
42         }
43         
44         if(root->left != nullptr){
45             inorderTraversal(root->left);
46         }
47         arr.push_back(root->val);
48         if(root->right != nullptr){
49             inorderTraversal(root->right);
50         }
51     }
52 };

 

 posted on 2013-12-31 18:54  zhuli19901106  阅读(174)  评论(0编辑  收藏  举报