随笔- 509  文章- 0  评论- 151  阅读- 22万 

LeetCode - Search in Rotated Sorted Array

2013.12.14 18:29

Suppose a sorted array is rotated at some pivot unknown to you beforehand.

(i.e., 0 1 2 4 5 6 7 might become 4 5 6 7 0 1 2).

You are given a target value to search. If found in the array return its index, otherwise return -1.

You may assume no duplicate exists in the array.

Solution1:

  My first solution is to find the smallest element in the array first, and do an "offset" binary search.

  Finding the smallest element requires O(n) time, the rotated binary search requires O(log(n)) time.

  Thus time complexity is O(n), space complexity is O(1).

Accepted code:

复制代码
 1 // 1AC, simple variation of binary search
 2 class Solution {
 3 public:
 4     int search(int A[], int n, int target) {
 5         // Note: The Solution object is instantiated only once and is reused by each test case.
 6         int offset;
 7         
 8         if(A == nullptr || n <= 0){
 9             return -1;
10         }
11         
12         for(offset = 0; offset < n; ++offset){
13             if(A[offset] > A[(offset + 1) % n]){
14                 break;
15             }
16         }
17         
18         int left, mid, right;
19         
20         offset = (offset + 1) % n;
21         left = offset;
22         right = n - 1 + offset;
23         while(left <= right){
24             mid = (left + right) / 2;
25             if(target < A[mid % n]){
26                 right = mid - 1;
27             }else if(target > A[mid % n]){
28                 left = mid + 1;
29             }else{
30                 return mid % n;
31             }
32         }
33         
34         return -1;
35     }
36 };
复制代码

Solution2:

  Apparently you won't impress anyone with an O(n) solution when the data given is somewhat "sorted", right? Let's find out how to make it O(log(n)).

  See the three examples below:

    1 2 3 4 5 6 7

    [7 1] 2 3 4 5 6

    4 5 6 [7 1] 2 3

  The three examples above are all rotated sorted array, rotated by 0, 1, 4 elements. For the latter two, the pair marked with "[]" is where the minimal element is followed by the maximal, that's where the pivot is. We're supposed to find it out using O(log(n)) time. Then do the binary search in an extra O(log(n)) time.

  See the code below, time complexity is O(log(n)), space complexity is O(1).

Accepted code:

复制代码
 1 // 1AC, simple variation of binary search, time complexity O(log(n))
 2 class Solution {
 3 public:
 4     int search(int A[], int n, int target) {
 5         // Note: The Solution object is instantiated only once and is reused by each test case.
 6         int offset;
 7         
 8         if(A == nullptr || n <= 0){
 9             return -1;
10         }
11         
12         int left, mid, right;
13         if(A[0] < A[n - 1]){
14             offset = n - 1;
15         }else{
16 
17             left = 0;
18             right = n - 1;
19             while(right - left > 1){
20                 mid = (left + right) / 2;
21                 if(A[left] > A[mid]){
22                     right = mid;
23                 }else{
24                     left = mid;
25                 }
26             }
27             offset = left;
28         }
29 
30         offset = (offset + 1) % n;
31         left = offset;
32         right = n - 1 + offset;
33         while(left <= right){
34             mid = (left + right) / 2;
35             if(target < A[mid % n]){
36                 right = mid - 1;
37             }else if(target > A[mid % n]){
38                 left = mid + 1;
39             }else{
40                 return mid % n;
41             }
42         }
43         
44         return -1;
45     }
46 };
复制代码

Solution 3:

  The solution above is already O(log(n)) in time, but performed 2 binary searches, let's try do this in one pass.

  Note that whenever you do a binary search, your goal is to limit the target within one interval, and shrink the size of interval with every iteration.

  So we'll need a few more "if" statements to ensure that the target value doesn't run out of the searching scope.

  Time complexity is O(log(n)), space complexity is O(1). This version of code is not very easy to understand, thus I'd still prefer the 2nd version, as simple code is easy to understand and maintain.

Accepted code:

复制代码
 1 // 1AC, simple variation of binary search, the code is not beautiful, though...
 2 class Solution {
 3 public:
 4     int search(int A[], int n, int target) {
 5         // Note: The Solution object is instantiated only once and is reused by each test case.
 6         int offset;
 7         
 8         if(A == nullptr || n <= 0){
 9             return -1;
10         }
11         
12         int left, mid, right;
13         
14         left = 0;
15         right = n - 1;
16         while(left <= right){
17             mid = (left + right) / 2;
18             if(A[left] <= A[right]){
19                 // the interval is already monotonous
20                 if(target < A[mid]){
21                     right = mid - 1;
22                 }else if(target > A[mid]){
23                     left = mid + 1;
24                 }else{
25                     return mid;
26                 }
27             }else{
28                 // the interval includes the 'pivot', containing two monotonous sub-array
29                 if(target < A[mid]){
30                     if(target >= A[left]){
31                         right = mid - 1;
32                     }else{
33                         if(A[mid] >= A[left]){
34                             left = mid + 1;
35                         }else{
36                             right = mid - 1;
37                         }
38                     }
39                 }else if(target > A[mid]){
40                     if(target <= A[right]){
41                         left = mid + 1;
42                     }else{
43                         if(A[mid] >= A[left]){
44                             left = mid + 1;
45                         }else{
46                             right = mid - 1;
47                         }
48                     }
49                 }else{
50                     return mid;
51                 }
52             }
53         }
54         
55         return -1;
56     }
57 };
复制代码

 

 posted on   zhuli19901106  阅读(289)  评论(0编辑  收藏  举报
编辑推荐:
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)
点击右上角即可分享
微信分享提示