摘要:
本文介绍一种方法,帮助我们了解一个时间序列是否可以预测,或者说了解可预测能力有多强。 Sample Entropy (样本熵) Sample Entropy是Approximate Entropy(近似熵)的改进,用于评价波形前后部分之间的混乱程度, 熵越大,乱七八糟的波动越多,越不适合预测;熵越小 阅读全文
摘要:
经典的时间序列预测方法都是假设如果一个时间序列有显著的自相关性,那么历史值对预测当前值会很有帮助,但是究竟取多少阶的历史值,就需要通过分析相关函数图和偏相关函数图来得到。本文介绍如何什么是相关函数图和偏相关函数图,另外还会介绍一下滞后图。 什么是自相关和偏自相关函数? 先来解释下滞后阶数n,如果当前 阅读全文
摘要:
有的时候,一些时刻或连续时间段内的值无法采集到,或者本身就没有值,本文将介绍如何处理这种情况。 一般而言,有以下几种方法: 对所有的缺失值用零填充。 前向填充:比如用周一的值填充缺失的周二的值 后向填充:比如用周二的值填充缺失的周一的值 采用n最近邻均值法填充:比如n取2,则用t-2,t-1,t+1 阅读全文
摘要:
Stationary Series 平稳序列 平稳序列有三个基本标准: 1、序列的均值(mean)不应该是时间的函数(意思是不应该随时间变化),而应该是一个常数。下面的左图满足这个条件,而右图的均值受时间的变化影响。 2、序列的方差(variance)不应该是时间的函数。这种特性称为homosced 阅读全文
摘要:
在初始概念篇中,我们简单提到了时间序列由趋势、周期性、季节性、误差构成,本文将介绍如何将时间序列的这些成分分解出来。分解的使用场景有很多,比如当我们需要计算该时间序列是否具有季节性,或者我们要去除该时间序列的趋势和季节性,让时间序列变得平稳时都会用到时间序列分解。 加法和乘法时间序列 时间序列的各个 阅读全文
摘要:
读取 时间序列数据一般用cvs等电子表格的形式存储,这里以cvs为例: from dateutil.parser import parse from datetime import datetime import matplotlib as mpl import matplotlib.pyplot 阅读全文
摘要:
什么是时间序列? 时间序列,是指同一个变量在连续且固定的时间间隔上的各个数据点的集合,比如每5分钟记录的收费口车流量,或者每年记录的药物销量都是时间序列。 时间序列的类型 根据时间间隔的不同,时间序列可以是按年度(Annual)、季度、月度、周、小时、分钟、秒等频率采集的序列。 时间序列的成分 趋势 阅读全文
摘要:
转自:https://cloud.tencent.com/developer/article/1646026 航司乘客数序列 预测步骤 # 加载时间序列数据 _ts = load_data() # 使用样本熵评估可预测性 print(f'原序列样本熵:{SampEn(_ts.values, m=2, 阅读全文
摘要:
转自:https://cloud.tencent.com/developer/article/1646121 什么是ARIMA? ARIMA是'Auto Regressive Integrated Moving Average'的简称。 ARIMA是一种基于时间序列历史值和历史值上的预测误差来对当前 阅读全文
摘要:
原文作者:AARSHAY JAIN 转自:https://cloud.tencent.com/developer/article/1059136 时间序列(简称TS)被认为是分析领域比较少人知道的技能。(我也是几天前才知道它)。但是你一定知道最近的小型编程马拉松就是基于时间序列发展起来的,我参加了这 阅读全文