Luogu P2572 序列操作
(是道线段树好题√)
题外话:这道题我也不知道卡了自己多少天,从初赛之前就开始做,一直到现在才a掉(时间跨度得有将近十天了吧?)
线段树,嗯,好像很简单的样子。
但事实上因为自己太菜了,卡了好久;
第一遍的思路简单的很,因为完全没有考虑标记下传的顺序问题,qf(取反)标记和chg(修改)标记各自下传各自的,于是乎就一直10分10分(没有好好写线段树Ⅱ的锅),咋改都不对,也没看出自己错在哪了;
然后被建议重构代码,于是尝试暴力出奇迹,\(O(nm)的暴力+O_2\)结果拿到了90pts??(jyy问号),特别迷惑;
Solution:
共有5个操作:(分别为
0 a b 把[a, b]区间内的所有数全变成0
1 a b 把[a, b]区间内的所有数全变成1
2 a b 把[a,b]区间内的所有数全部取反,也就是说把所有的0变成1,把所有的1变成0
3 a b 询问[a, b]区间内总共有多少个1
4 a b 询问[a, b]区间内最多有多少个连续的1
要想完成这以上五个操作,在线段树上需要维护以下信息:
\(t[k].sum\) 记录k节点对应区间共有多少个1
\(t[k].L[0/1]\)分别记录k节点对应区间的左边有几个连续的0/1
\(t[k].R[0/1]\)分别记录k节点对应区间的右边有几个连续的0/1
↑维护左右连续0/1的个数,是因为在合并两个区间时,最长的连续的个数有可能来自左区间右侧和右区间左侧的合并
\(t[k].mx[0/1]\)记录k节点对应区间最长连续0/1的个数
两个标记:
\(t[k].qf\) 取反标记 0>不取反 1>取反
$t[k].chg $ 修改标记 -1>不修改 0> 修改为0 1==>修改为1
对于\(t[k].L[0/1],t[k].R[0/1],t[k].mx[0/1]\)的维护需要注意区间合并时可能会产生更长的连续段,要考虑并且维护,建树、修改、查询以及对应的重新维护区间的update此处省略…字,下面重点讲pushdown:
因为有两个不同的标记,在下传标记时要考虑先下传哪一个:
首先要明确是区间对于这棵线段树来说,取反标记和修改标记是无法通过modify函数的修改同时存在的(都pushdown掉了所以不会同时存在w)
啊,是凌乱的lz,我该怎么讲明白这个标记下传的问题
先讲下传规则再来感性李姐叭:
1.对于一个既有修改标记又有取反标记的节点,我们忽略取反标记,只下传修改标记
2.如果只有取反标记,又要分为两种情况:
- 要下传的子节点有修改标记,那么直接将修改标记取反,不下传取反标记;
- 要下传的子节点没有修改标记,将子节点的取反标记取反;
然后交换0/1的信息(swap大法好√)
最后不要忘记将当前节点的标记清空。
所以如果既有修改标记又有取反标记,那么取反标记一定是通过它的祖先节点下传的,而在下传时,修改标记的值就已经相应的被取反了,所以不需要再下传取反标记了w;
最后,是老Re lz的代码(是码风清奇的奇女子将就着看叭):
Code:
#include<bits/stdc++.h>
using namespace std;
inline int read() {
int ans=0;
char last=' ',ch=getchar();
while(ch>'9'||ch<'0') last=ch,ch=getchar();
while(ch>='0'&&ch<='9') ans=(ans<<1)+(ans<<3)+ch-'0',ch=getchar();
if(last=='-') ans=-ans;
return ans;
}
const int mxn=200010;
int m,n,maxn;
int x[mxn];
struct node {
int sum;
int L[2],R[2];
int qf,chg;
int mx[2];
} t[mxn<<2];
void update(int k,int l,int r) {
t[k].sum=t[k<<1].sum+t[k<<1|1].sum;
int mid=(l+r)>>1;
for(int i=0; i<=1; i++) {
t[k].L[i]=t[k<<1].L[i];
if(t[k<<1].L[i]==mid-l+1)
t[k].L[i]+=t[k<<1|1].L[i];
t[k].R[i]=t[k<<1|1].R[i];
if(t[k<<1|1].R[i]==r-mid)
t[k].R[i]+=t[k<<1].R[i];
t[k].mx[i]=max(t[k<<1].mx[i],max(t[k<<1|1].mx[i],t[k<<1].R[i]+t[k<<1|1].L[i]));
}
}
void build(int k,int l,int r) {
t[k].chg=-1;
t[k].qf=0;
if(l==r) {
t[k].L[0]=t[k].R[0]=t[k].mx[0]=x[l]==0;
t[k].L[1]=t[k].R[1]=t[k].mx[1]=x[l]==1;
if(x[l]) t[k].sum=1;
return;
}
int mid=(l+r)>>1;
build(k<<1,l,mid);
build(k<<1|1,mid+1,r);
update(k,l,r);
}
void pushdown(int k,int l,int r) {
int mid=(l+r)>>1;
if(t[k].chg!=-1) {
int p=t[k].chg;
t[k].qf=0;
t[k<<1].chg=t[k<<1|1].chg=p;
t[k<<1].qf=t[k<<1|1].qf=0;
t[k<<1].sum=(mid-l+1)*p;
t[k<<1|1].sum=(r-mid)*p;
t[k<<1].L[p]=t[k<<1].mx[p]=t[k<<1].R[p]=mid-l+1;
t[k<<1|1].L[p]=t[k<<1|1].mx[p]=t[k<<1|1].R[p]=r-mid;
t[k<<1].L[p^1]=t[k<<1].mx[p^1]=t[k<<1].R[p^1]=0;
t[k<<1|1].L[p^1]=t[k<<1|1].mx[p^1]=t[k<<1|1].R[p^1]=0;
t[k].chg=-1;
}
if(t[k].qf) {
t[k<<1].sum=mid-l+1-t[k<<1].sum;
t[k<<1|1].sum=r-mid-t[k<<1|1].sum;
if(t[k<<1].chg!=-1)
t[k<<1].chg^=1;
else
t[k<<1].qf^=1;
if(t[k<<1|1].chg!=-1)
t[k<<1|1].chg^=1;
else
t[k<<1|1].qf^=1;
swap(t[k<<1].L[0],t[k<<1].L[1]);
swap(t[k<<1].R[0],t[k<<1].R[1]);
swap(t[k<<1].mx[0],t[k<<1].mx[1]);
swap(t[k<<1|1].L[0],t[k<<1|1].L[1]);
swap(t[k<<1|1].R[0],t[k<<1|1].R[1]);
swap(t[k<<1|1].mx[0],t[k<<1|1].mx[1]);
t[k].qf=0;
}
}
void modify(int k,int l,int r,int x,int y,int q) {
pushdown(k,l,r);
if(x<=l&&r<=y) {
if(q==1||q==0) {
t[k].sum=(r-l+1)*q;
t[k].L[q]=t[k].R[q]=t[k].mx[q]=r-l+1;
t[k].L[q^1]=t[k].R[q^1]=t[k].mx[q^1]=0;
t[k].chg=q;
} else {
t[k].sum=(r-l+1)-t[k].sum;
t[k].qf^=1;
swap(t[k].L[0],t[k].L[1]);
swap(t[k].R[0],t[k].R[1]);
swap(t[k].mx[0],t[k].mx[1]);
}
return;
}
int mid=(l+r)>>1;
if(x<=mid) modify(k<<1,l,mid,x,y,q);
if(y>mid) modify(k<<1|1,mid+1,r,x,y,q);
update(k,l,r);
}
int query(int k,int l,int r,int x,int y) {
pushdown(k,l,r);
if(x<=l&&r<=y)
return t[k].sum;
int mid=(l+r)>>1;
int rtn=0;
if(x<=mid) rtn+=query(k<<1,l,mid,x,y);
if(y>mid) rtn+=query(k<<1|1,mid+1,r,x,y);
return rtn;
}
int Query(int k,int l,int r,int x,int y) {
pushdown(k,l,r);
if(x<=l&&r<=y)
return t[k].mx[1];
int mid=(l+r)>>1;
int rtn=0;
if(x<=mid) rtn=max(rtn,Query(k<<1,l,mid,x,y));
if(y>mid) rtn=max(rtn,Query(k<<1|1,mid+1,r,x,y));
if(x<=mid&&y>mid)
rtn=max(rtn,min(mid-x+1,t[k<<1].R[1])+min(y-mid,t[k<<1|1].L[1]));
return rtn;
}
int main() {
n=read();
m=read();
for(int i=1; i<=n; i++)
x[i]=read();
build(1,1,n);
for(int i=1,op,a,b;i<=m;i++) {
op=read();
a=read();a++;
b=read();b++;
if(op==0)
modify(1,1,n,a,b,0);
if(op==1)
modify(1,1,n,a,b,1);
if(op==2)
modify(1,1,n,a,b,2);
if(op==3)
printf("%d\n",query(1,1,n,a,b));
if(op==4)
printf("%d\n",Query(1,1,n,a,b));
}
return 0;
}