【6.10校内test】T1 FBI树

FBI树【题目链接】

感觉我超废。


MY SOLUTION:
     
我的想法其实也是很简单的,递归的去做,因为最后要求输出FBI的后序遍历,也就是左右头,我的方法是递归存字符数组,(按照与后序遍历完全相反的顺序存的),然后倒序输出。非常遗憾的是,因为开始时写递归写炸了(微笑),于是我修改递归变成了main函数里先进行判整个串,当n=0时,就输出了两位。

 

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

int n, cnt;
char a[2000];
char c[2000];

int pd(int x, int y) {//写了一个复杂的判断函数 
    if (x == y) {
        if (a[x] == '1')  return 1;
        else return 0;
    }

    for (int i = x + 1; i <= y; i++)
        if (a[i] != a[i - 1]) return 2;

    if (a[x] == '1') return 1;

    if (a[x] == '0') return 0;
}

int solve(int f, int len) {
    int d = (len + f) >> 1;
    int num = len;
    if (f > len)
        return 0;
    if (pd(f, len) == 2)
        c[++cnt] = 'F';
    if (pd(f, len) == 1)
        c[++cnt] = 'I';
    if (pd(f, len) == 0)
        c[++cnt] = 'B';

    if (f == len)
        return 0;
    len >>= 1;
    solve(d + 1, num);
    solve(f, d);
    return 0;
}

int main() {
    scanf("%d", &n);
    scanf("%s", a + 1);//输入 from a[1];  
    int len = strlen(a + 1);//求a[1] to a[len] 的长度; 
    if (pd(1, len) == 2)
        c[1] = 'F';
    if (pd(1, len) == 1)
        c[1] = 'I';
    if (pd(1, len) == 0)
        c[1] = 'B';
    cnt++;
    int g = len >> 1;
    solve(g + 1, len);//因为后序遍历,故先递归右子树 
    solve(1, g);
    if (n == 0) {//被坑的地方,因为n==0时,如果按我的递归方式cnt=2; 
        cout << c[1] << endl;
        return 0;
    }
    for (int i = cnt; i >= 1; i--) cout << c[i];
    return 0;
}

我想改一改我的这个代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

int n, cnt;
char a[2000];
char c[2000];

int pd(int x, int y) {
    for (int i = x + 1; i <= y; i++)
        if (a[i] != a[i - 1])
            return 2;
    if (a[x] == '1')
        return 1;
    if (a[x] == '0')
        return 0;
}

int solve(int f, int len) {
    if(f==len) {if(a[f]=='1') c[++cnt]='I';
      else c[++cnt]='B';
    return 0;}
    int d = (len + f) >> 1;
    if(f>len) return 0;
    if (pd(f, len) == 2)
        c[++cnt] = 'F';
    if (pd(f, len) == 1)
        c[++cnt] = 'I';
    if (pd(f, len) == 0)
        c[++cnt] = 'B';
    solve(d+1,len); solve(f,d);
    return 0;
}

int main() {
    scanf("%d", &n);
    scanf("%s", a + 1);
    int len = strlen(a + 1);
    
    solve(1, len);
    
    for (int i = cnt; i >= 1; i--) cout << c[i];
    return 0;
}

WATER_LIFT'S SOLUTION:(是我手打的但思路是water_lift的)

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

int n, cnt;
char a[2000];
char c[2000];

int pd(int x, int y) {
    if (x == y) {
        if (a[x] == '1') return 1;
        else return 0;
    }

    for (int i = x + 1; i <= y; i++)
        if (a[i] != a[i - 1]) return 2;
        
    if (a[x] == '1') return 1;
    if (a[x] == '0') return 0;
}

int solve(int f, int len) {
    if(f==len) {
        if(a[f]=='1') cout<<"I";
        if(a[f]=='0') cout<<"B";
        return 0;
    }
    int d = (len + f) >> 1;
    solve(f,d);
    solve(d+1,len);
    if (pd(f, len) == 2)
        cout<<"F";
    if (pd(f, len) == 1)
        cout<<"I";
    if (pd(f, len) == 0)
        cout<<"B";
    return 0;
}

int main() {
    scanf("%d", &n);
    scanf("%s", a + 1);
    int len = strlen(a + 1);
   
    solve(1,len);
    return 0;
}

 至于water_lift的非暴力算法,大家看看就好:

#include <iostream>
#include <string>
using namespace std;
int n;
string s;
char dfs(int l, int r)
{
    if (l == r)
    {
        if (s[l] == '0')
        {
            cout << 'B';
            return 'B';
        }
        else if (s[l] == '1')
        {
            cout << 'I';
            return 'I';
        }
    }
    int mid = (l + r) / 2;
    char le = dfs(l, mid);
    char ri = dfs(mid + 1, r);
    if (le == 'B' && ri == 'B')
    {
        cout << 'B';
        return 'B';
    }
    if (le == 'I' && ri == 'I')
    {
        cout << 'I';
        return 'I';
    }
    cout << 'F';
    return 'F';
}
int main()
{
    freopen("fbi.in", "r", stdin);
    freopen("fbi.out", "w", stdout);
    cin >> n >> s;
    dfs(0, (1 << n) - 1);
    cout << endl;
}

end-

posted @ 2019-06-10 14:50  Sweetness  阅读(162)  评论(2编辑  收藏  举报