BZOJ-1010-[HNOI2008]玩具装箱toy(斜率优化)

Description

  P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压
缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过
压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容
器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一
个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,
如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容
器,甚至超过L。但他希望费用最小.

Input

  第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7

Output

  输出最小费用

Sample Input

5 4
3
4
2
1
4

Sample Output

1
 

题解

这道题朴素dp要O(n^2),果断超时,dp[i]表示前1~i合并的最优值,枚举j表示前一次合并的位置

那么dp[i]=min(dp[i],dp[j]+(i-(j+1)+s[i]-s[j]-L)^2)

这里可以用斜率优化来做,把复杂度降到O(n)

我们假设k<j<i,j比k更优,那么就是dp[j]+(i-(j+1)+s[i]-s[j]-L)^2<=dp[k]+(i-(k+1)+s[i]-s[k]-L)^2

我们这里再用f[i]=s[i]+i,那么式子化成了dp[j]+(f[i]-f[j]-1-L)^2<=dp[k]+(f[i]-f[k]-1-L)^2

再接着化下去就变成了

(dp[j]-dp[k]+(f[j]+1+L)^2-(f[k]+1+L)^2)/(2*(f[j]-f[k]))<=f[i]

根据这个式子,我们在加入队列的时候就可以判断了

对于踢出队尾,我们考虑一下q[tail],i和q[tail-1],q[tail]的斜率

因为f[i]是单调递增的,q[tail-1],q[tail]原来就满足<=f[i],所以要踢出队尾,就要有q[tail],i<q[tail-1],q[tail](表示i比q[tail]更优)

 1 #include<bits/stdc++.h>
 2 #define N 50005
 3 #define ll long long
 4 using namespace std;
 5 int n,head,tail;
 6 ll L;
 7 int a[N];
 8 ll s[N],f[N],dp[N],q[N];
 9 double calc(int k,int j){
10     return (double)(dp[j]-dp[k]+(f[j]+1+L)*(f[j]+1+L)-(f[k]+1+L)*(f[k]+1+L))/(2*(f[j]-f[k]));
11 }
12 int main(){
13     scanf("%d%lld",&n,&L);
14     for (int i=1;i<=n;i++)
15         scanf("%lld",&a[i]),f[i]=f[i-1]+1+a[i];
16     head=1; tail=1;
17     for (int i=1;i<=n;i++){
18         while (head<tail&&calc(q[head],q[head+1])<=f[i]) head++;
19         int k=q[head];
20         dp[i]=dp[k]+(f[i]-f[k]-1-L)*(f[i]-f[k]-1-L);
21         while (head<tail&&calc(q[tail],i)<calc(q[tail-1],q[tail])) tail--;
22         q[++tail]=i;
23     } 
24     printf("%lld\n",dp[n]);
25     return 0;
26 }
View Code

 

posted @ 2017-10-06 10:45  I__am  阅读(165)  评论(0编辑  收藏  举报