BZOJ-1012-[JSOI2008]最大数maxnumber(线段树)

Description

  现在请求你维护一个数列,要求提供以下两种操作:1、 查询操作。语法:Q L 功能:查询当前数列中末尾L
个数中的最大的数,并输出这个数的值。限制:L不超过当前数列的长度。2、 插入操作。语法:A n 功能:将n加
上t,其中t是最近一次查询操作的答案(如果还未执行过查询操作,则t=0),并将所得结果对一个固定的常数D取
模,将所得答案插入到数列的末尾。限制:n是非负整数并且在长范围内。注意:初始时数列是空的,没有一个
数。

Input

  第一行两个整数,M和D,其中M表示操作的个数(M <= 200,000),D如上文中所述,满足D在longint内。接下来
M行,查询操作或者插入操作。

Output

  对于每一个询问操作,输出一行。该行只有一个数,即序列中最后L个数的最大数。

Sample Input

5 100
A 96
Q 1
A 97
Q 1
Q 2

Sample Output

96
93
96

题解

这道题给你两种操作

一种添加一种查询,并且m<=200,000

我们很容易想到用线段树来维护

具体要怎么维护呢,其实很简单

因为m最大有200000,我们就开一个[1,200000]的线段树

每次要添加的时候就把cnt++(cnt表示加入数列的个数),就当作在第cnt个位置加上一个数

查询的时候也一样,查询区间就是[cnt-L+1,cnt]

 1 #include<bits/stdc++.h>
 2 #define maxn 200005
 3 using namespace std;
 4 int n,m,d,t,cnt;
 5 int tree[4*maxn];
 6 char ch[5];
 7 void add(int v,int l,int r,int p,int k){
 8     if (l==r)
 9         if (l==p){
10             tree[v]=k;
11             return;
12         }
13     int mid=(l+r)>>1;
14     if (p<=mid) add(v<<1,l,mid,p,k);
15             else add(1+(v<<1),mid+1,r,p,k);
16     tree[v]=max(tree[v<<1],tree[1+(v<<1)]);
17 }
18 int query(int v,int l,int r,int x,int y){
19     if (x<=r||y>=l){
20         if (l==x&&r==y) return tree[v];
21         int mid=(l+r)>>1;
22         if (y<=mid) return query(v<<1,l,mid,x,y); else
23         if (x>mid) return query(1+(v<<1),mid+1,r,x,y); else{
24             return max(query(v<<1,l,mid,x,mid),query(1+(v<<1),mid+1,r,mid+1,y));
25         }
26     }
27 }
28 int main(){
29     scanf("%d%d",&m,&d);
30     for (int i=1;i<=m;i++){
31         scanf("%s %d",&ch,&n);
32         if (ch[0]=='A'){
33             n=(n+t)%d;
34             add(1,1,maxn-5,++cnt,n);
35         } else{
36             t=query(1,1,maxn-5,cnt-n+1,cnt);
37             printf("%d\n",t);
38         }
39     }
40     return 0;
41 } 
View Code

 

 
posted @ 2017-09-27 16:31  I__am  阅读(135)  评论(0编辑  收藏  举报