单目深度估计(Monocular Depth Estimation)之摄像机运动对深度估计的影响

转载请说明出处

http://blog.csdn.net/zhubaohua_bupt/article/details/54093689


最近利用单目相机在做三维重建相关的工作,下面总结一下摄像机运动对单目深度估计的影响。

 

单目方法求取深度的一般流程是

1设定待求取区域

2根据帧间位姿和带有误差的深度计算像素在后来帧上的极线

3在极线上寻找匹配

4三角测量求出本次的观测深度值以及深度的不确定性

5多次测量的深度数据以及方差融合

6 去噪平滑深度图

下面看一下相机的运动会对深度估计带来哪些影响。

对以下文章的符号说明:

T:相机相对于世界坐标系的位姿   大小4*4

e:极点   (二维像素平面坐标)

o:相机光心

f:像素点在当前相机坐标系下的单位方向向量  (三维)

d:像素深度

p(u,v):像素平面坐标

P(X,Y,Z):相机坐标系下的三维坐标

t:图像平面或时间


一:纯平移对匹配搜索极线的影响

在平移不至于丢失共同视野的情况下,平移越大,匹配搜索极线越长。

如下两幅图

  小平移



大平移



二:纯旋转对深度估计的影响

从几何直观来看:

我们求取深度的时候第2步要计算在后帧上的极线,纯旋转情况下,由于我们无法得到极线,因此也就无法匹配、三角测量求取深度。


理论证明:

t1和t2为两个时刻对应的图像平面,现在我们想利用t2时刻相机拍摄到的图像来求取t1时刻上像素的深度。

假设:t1时刻的相机坐标系为世界坐标系,t2时刻的相机坐标系为t1时刻的相机坐标系纯旋转得到。


那么t2时刻,相机相对于t1时刻的位姿为:


接下来,我们试图计算t1时刻相机图像平面上的p点在t2时刻相机平面上的极线

p点的最小深度为dmin,最大深度为dmax,f为p点在t1时刻相机坐标系下的单位空间方向向量,使得


这里Pmin和Pmax同在一条由t1时刻光心发出的一条射线上。

现在我们利用位姿把Pmin和Pmax转换至t2相机坐标系下,其坐标分别记作P’min和P'max



那么问题就来了,我们本打算利用位姿把Pmin和Pmax转换至t2相机坐标系下,然后通过内参求出在t2时刻图像上对应的极点emax,emin。


但是现在P'min和P'max成比例,也就是说:


这两个点在t2相机坐标系下表示的三维点处在t2光心发出的某一条射线上,即它们对应的极点e(这里应该不能称为极点了吧。。)是同一个,因此也就无法计算极线。

结论:单目相机在纯旋转的情况下无法计算深度。

欢迎大家纠错与补充,一起进步。


 

posted on 2017-01-06 11:34  从小白做起  阅读(3346)  评论(0编辑  收藏  举报