《LED总线驱动例程》
1.LED总线驱动源码
led_opr.h
#ifndef _LED_OPR_H #define _LED_OPR_H struct led_operations { int (*init) (int which); /* 初始化LED, which-哪个LED */ int (*ctl) (int which, char status); /* 控制LED, which-哪个LED, status:1-亮,0-灭 */ }; struct led_operations *get_board_led_opr(void); #endif
led_source.h
#ifndef _LED_RESOURCE_H #define _LED_RESOURCE_H /* GPIO3_0 */ /* bit[31:16] = group */ /* bit[15:0] = which pin */ #define GROUP(x) (x>>16) #define PIN(x) (x&0xFFFF) #define GROUP_PIN(g,p) ((g<<16) | (p)) #endif
led_driver.c
#include <linux/module.h> #include <linux/fs.h> #include <linux/errno.h> #include <linux/miscdevice.h> #include <linux/kernel.h> #include <linux/major.h> #include <linux/mutex.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/stat.h> #include <linux/init.h> #include <linux/device.h> #include <linux/tty.h> #include <linux/kmod.h> #include <linux/gfp.h> #include "led_opr.h" /* 1. 确定主设备号 */ static int major = 0; static struct class *led_class; struct led_operations *p_led_opr; #define MIN(a, b) (a < b ? a : b) void led_class_create_device(int minor) { device_create(led_class, NULL, MKDEV(major, minor), NULL, "100ask_led%d", minor); /* /dev/100ask_led0,1,... */ } void led_class_destroy_device(int minor) { device_destroy(led_class, MKDEV(major, minor)); } void register_led_operations(struct led_operations *opr) { p_led_opr = opr; } EXPORT_SYMBOL(led_class_create_device); EXPORT_SYMBOL(led_class_destroy_device); EXPORT_SYMBOL(register_led_operations); /* 3. 实现对应的open/read/write等函数,填入file_operations结构体 */ static ssize_t led_drv_read (struct file *file, char __user *buf, size_t size, loff_t *offset) { printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__); return 0; } /* write(fd, &val, 1); */ static ssize_t led_drv_write (struct file *file, const char __user *buf, size_t size, loff_t *offset) { int err; char status; struct inode *inode = file_inode(file); int minor = iminor(inode); printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__); err = copy_from_user(&status, buf, 1); /* 根据次设备号和status控制LED */ p_led_opr->ctl(minor, status); return 1; } static int led_drv_open (struct inode *node, struct file *file) { int minor = iminor(node); printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__); /* 根据次设备号初始化LED */ p_led_opr->init(minor); return 0; } static int led_drv_close (struct inode *node, struct file *file) { printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__); return 0; } /* 2. 定义自己的file_operations结构体 */ static struct file_operations led_drv = { .owner = THIS_MODULE, .open = led_drv_open, .read = led_drv_read, .write = led_drv_write, .release = led_drv_close, }; /* 4. 把file_operations结构体告诉内核:注册驱动程序 */ /* 5. 谁来注册驱动程序啊?得有一个入口函数:安装驱动程序时,就会去调用这个入口函数 */ static int __init led_init(void) { int err; printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__); major = register_chrdev(0, "100ask_led", &led_drv); /* /dev/led */ led_class = class_create(THIS_MODULE, "100ask_led_class"); err = PTR_ERR(led_class); if (IS_ERR(led_class)) { printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__); unregister_chrdev(major, "led"); return -1; } /* 本来函数是向底层获取结构体,但是由于EXPORT_SYMBOL(led_class_create_device);的关系, 也就是leddrv这个驱动要先加载,然后再加载chip_demo_gpio。 但是这个下面这个函数是在底层定义,也就是要先加载底层的驱动,然后再加载上层驱动。这样就会 存在交叉加载。所以现在不用这个函数。 EXPORT_SYMBOL(register_led_operations); 通过这个函数,让底层主动向上层注册结构体。*/ // p_led_opr = get_board_led_opr(); return 0; } /* 6. 有入口函数就应该有出口函数:卸载驱动程序时,就会去调用这个出口函数 */ static void __exit led_exit(void) { printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__); class_destroy(led_class); unregister_chrdev(major, "100ask_led"); } /* 7. 其他完善:提供设备信息,自动创建设备节点 */ module_init(led_init); module_exit(led_exit); MODULE_LICENSE("GPL");
驱动程序中向内核注册了file_operations结构体,结构体里面有open,read,write,close等函数。
p_led_opr是led_operations结构体的指针变量。相关定义在led_opr.h中,主要有init()和ctl()两个函数指针。前者用来初始化具体的哪个LED,后者用来控制哪个LED的亮跟灭。这两个函数是实际与硬件相关控制有关的。
在led_driver.c中主要是与驱动相关的通用程序,与硬件无关。
通过register_led_operations()函数可以在chip_demo_gpio.c中调用,让底层主动向驱动注册这两个函数。
EXPORT_SYMBOL标签内定义的函数或者符号对全部内核代码公开,不用修改内核代码就可以在您的内核模块中直接调用,即使用EXPORT_SYMBOL可以将一个函数以符号的方式导出给其他模块使用。
led_class_create_device()和led_class_destroy_device()函数,函数作用是用来创建设备节点的和销毁设备节点。本来是直接在驱动程序中创建的。但是因为现在使用总线的框架,驱动和硬件分离。程序一开始不知道要注册多少个设备节点,所以创建设备节点就放在当设备匹配后,调用probe的时候来创建。因为这个时候可以知道有多少个设备,就可以创建多少个设备节点。
chip_demo_gpio.c
#include <linux/module.h> #include <linux/fs.h> #include <linux/errno.h> #include <linux/miscdevice.h> #include <linux/kernel.h> #include <linux/major.h> #include <linux/mutex.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/stat.h> #include <linux/init.h> #include <linux/device.h> #include <linux/tty.h> #include <linux/kmod.h> #include <linux/gfp.h> #include <linux/platform_device.h> #include "led_opr.h" #include "leddrv.h" #include "led_resource.h" static int g_ledpins[100]; static int g_ledcnt = 0; static int board_demo_led_init (int which) /* 初始化LED, which-哪个LED */ { //printk("%s %s line %d, led %d\n", __FILE__, __FUNCTION__, __LINE__, which); printk("init gpio: group %d, pin %d\n", GROUP(g_ledpins[which]), PIN(g_ledpins[which])); switch(GROUP(g_ledpins[which])) { case 0: { printk("init pin of group 0 ...\n"); break; } case 1: { printk("init pin of group 1 ...\n"); break; } case 2: { printk("init pin of group 2 ...\n"); break; } case 3: { printk("init pin of group 3 ...\n"); break; } } return 0; } static int board_demo_led_ctl (int which, char status) /* 控制LED, which-哪个LED, status:1-亮,0-灭 */ { //printk("%s %s line %d, led %d, %s\n", __FILE__, __FUNCTION__, __LINE__, which, status ? "on" : "off"); printk("set led %s: group %d, pin %d\n", status ? "on" : "off", GROUP(g_ledpins[which]), PIN(g_ledpins[which])); switch(GROUP(g_ledpins[which])) { case 0: { printk("set pin of group 0 ...\n"); break; } case 1: { printk("set pin of group 1 ...\n"); break; } case 2: { printk("set pin of group 2 ...\n"); break; } case 3: { printk("set pin of group 3 ...\n"); break; } } return 0; } static struct led_operations board_demo_led_opr = { .init = board_demo_led_init, .ctl = board_demo_led_ctl, }; static int chip_demo_gpio_probe(struct platform_device *pdev) { struct resource *res; int i = 0; while (1) { res = platform_get_resource(pdev, IORESOURCE_IRQ, i++); if (!res) break; g_ledpins[g_ledcnt] = res->start; led_class_create_device(g_ledcnt); g_ledcnt++; } return 0; } static int chip_demo_gpio_remove(struct platform_device *pdev) { struct resource *res; int i = 0; while (1) { res = platform_get_resource(pdev, IORESOURCE_IRQ, i); if (!res) break; led_class_destroy_device(i); i++; g_ledcnt--; } return 0; } static struct platform_driver chip_demo_gpio_driver = { .probe = chip_demo_gpio_probe, .remove = chip_demo_gpio_remove, .driver = { .name = "100ask_led", }, }; static int __init chip_demo_gpio_drv_init(void) { int err; err = platform_driver_register(&chip_demo_gpio_driver); register_led_operations(&board_demo_led_opr); return 0; } static void __exit lchip_demo_gpio_drv_exit(void) { platform_driver_unregister(&chip_demo_gpio_driver); } module_init(chip_demo_gpio_drv_init); module_exit(lchip_demo_gpio_drv_exit); MODULE_LICENSE("GPL");
chip_demo_gpio_drv_init()函数向内核注册一个platform_driver结构体变量chip_demo_gpio_driver,里面有probe、remove、以及name的定义。其中probe就是当匹配成功后会被调用的函数。并且调用register_led_operations()函数,也就是led_driver.c中的函数。把init()和ctl()这两个函数向led_driver.c注册。(相当于底层每次更新完init()和ctl()会自动注册。这里运用了函数指针的便捷性)
通过platform_get_resource()函数获取硬件资源。放在数组g_ledpins中。同时通过led_class_create_device()进行设备节点的注册。(为什么这里还要将device_create()再封装成led_class_create_device()函数。注意:这里led_driver.c和chip_demo_gpio.c属于两个ko。如果要在chip_demo_gpio.c直接调用device_create()还要再调用一次class_create()函数。但是class_create()函数属于通用函数,与硬件不相关)
board_A_led.c
#include <linux/module.h> #include <linux/fs.h> #include <linux/errno.h> #include <linux/miscdevice.h> #include <linux/kernel.h> #include <linux/major.h> #include <linux/mutex.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/stat.h> #include <linux/init.h> #include <linux/device.h> #include <linux/tty.h> #include <linux/kmod.h> #include <linux/gfp.h> #include <linux/platform_device.h> #include "led_resource.h" static void led_dev_release(struct device *dev) { } static struct resource resources[] = { { .start = GROUP_PIN(3,1), .flags = IORESOURCE_IRQ, .name = "100ask_led_pin", }, { .start = GROUP_PIN(5,8), .flags = IORESOURCE_IRQ, .name = "100ask_led_pin", }, }; static struct platform_device board_A_led_dev = { .name = "100ask_led", .num_resources = ARRAY_SIZE(resources), .resource = resources, .dev = { .release = led_dev_release, }, }; static int __init led_dev_init(void) { int err; err = platform_device_register(&board_A_led_dev); return 0; } static void __exit led_dev_exit(void) { platform_device_unregister(&board_A_led_dev); } module_init(led_dev_init); module_exit(led_dev_exit); MODULE_LICENSE("GPL");
board_A_led.c主要就是定义硬件资源。这里定义的是LED的引脚
2.总结
board_A_led.c和chip_demo_gpio.c中分别定义了platform_device和platform_driver_register。并向内核注册。当匹配成功后就会调用platform_driver_register结构体中的.probe。这里体现了总线驱动的概念。
至于led_driver.c主要是做一些通过的操作。比如创建一个led_class类和注册file_operations结构体。并且定义open、close、write、read函数。其中调用了p_led_opr->ctl(minor, status);这样的操作。实际就是结构体以及函数指针的概念,让程序分离,耦合性减少。方便修改。
1.在头文件中定义一个结构体,结构体成员为函数指针。
2.在led_driver.c中定义一个结构体变量。
3.通过变量去调用结构体成员。p_led_opr->ctl(minor, status)类似这样,这样就相当于直接调用一个函数。但是函数是个变量,未定。
4.并且在led_driver.c中定义一个函数。
5.该函数可以让其他.c文件调用,调用后可以让其他.c文件中定义的结构体变量赋值过来。
6.而其他.c文件中定义了具体的函数
led_opr.h
1. struct led_operations { int (*init) (int which); /* 初始化LED, which-哪个LED */ int (*ctl) (int which, char status); /* 控制LED, which-哪个LED, status:1-亮,0-灭 */ }; led_driver.c 2.
struct led_operations *p_led_opr;
4. void register_led_operations(struct led_operations *opr) { p_led_opr = opr; } EXPORT_SYMBOL(register_led_operations);//声明后可以让其他ko调用该函数 static ssize_t led_drv_write (struct file *file, const char __user *buf, size_t size, loff_t *offset) { int err; char status; struct inode *inode = file
_inode(file); int minor = iminor(inode); printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__); err = copy_from_user(&status, buf, 1); /* 根据次设备号和status控制LED */ 3.
p_led_opr->ctl(minor, status); return 1; } //open、read、close就不贴出来了 chip_demo_gpio.c static int __init chip_demo_gpio_drv_init(void) { int err; err = platform_driver_register(&chip_demo_gpio_driver); 5.
register_led_operations(&board_demo_led_opr); return 0; }
5. static struct led_operations board_demo_led_opr = { .init = board_demo_led_init, .ctl = board_demo_led_ctl, };
6. static int board_demo_led_init (int which) /* 初始化LED, which-哪个LED */ { //printk("%s %s line %d, led %d\n", __FILE__, __FUNCTION__, __LINE__, which); printk("init gpio: group %d, pin %d\n", GROUP(g_ledpins[which]), PIN(g_ledpins[which])); 略 return 0; } 6. static int board_demo_led_ctl (int which, char status) /* 控制LED, which-哪个LED, status:1-亮,0-灭 */ { //printk("%s %s line %d, led %d, %s\n", __FILE__, __FUNCTION__, __LINE__, which, status ? "on" : "off"); printk("set led %s: group %d, pin %d\n", status ? "on" : "off", GROUP(g_ledpins[which]), PIN(g_ledpins[which])); 略 return 0; }