数据分析 四 pandas的拼接操作

pandas的拼接操作

 

pandas的拼接分为两种:

  • 级联:pd.concat, pd.append
  • 合并:pd.merge, pd.join

1. 使用pd.concat()级联

 

pandas使用pd.concat函数,与np.concatenate函数类似,只是多了一些参数:

objs
axis=0
keys
join='outer' / 'inner':表示的是级联的方式,outer会将所有的项进行级联(忽略匹配和不匹配),而inner只会将匹配的项级联到一起,不匹配的不级联
ignore_index=False
 

1)匹配级联

import pandas as pd
from pandas import Series,DataFrame
import numpy as np
df1 = DataFrame(data=np.random.randint(0,100,size=(3,4)),index=['a','b','c'])
df2 = DataFrame(data=np.random.randint(0,100,size=(3,3)),index=['a','d','c'])
pd.concat((df1,df1),axis=0)


============
    0    1    2
a    5    53    94
b    5    26    13
c    65    60    90
a    5    53    94
b    5    26    13
c    65    60    90

2) 不匹配级联

 

不匹配指的是级联的维度的索引不一致。例如纵向级联时列索引不一致,横向级联时行索引不一致

 

有2种连接方式:

  • 外连接:补NaN(默认模式)
 
  • 内连接:只连接匹配的项
pd.concat((df1,df2),axis=0,join='inner')
# pd.concat((df1,df2),axis=1)
0    1    2
a    15    46    58
b    56    28    94
c    26    49    98
a    43    37    93
d    63    91    82
c    40    34    16

2. 使用pd.merge()合并

 

merge与concat的区别在于,merge需要依据某一共同的列来进行合并

使用pd.merge()合并时,会自动根据两者相同column名称的那一列,作为key来进行合并。

注意每一列元素的顺序不要求一致

 

参数:

  • how:out取并集 inner取交集
 
  • on:当有多列相同的时候,可以使用on来指定使用那一列进行合并,on的值为一个列表
 

1) 一对一合并

df1 = DataFrame({'employee':['Bob','Jake','Lisa'],
                'group':['Accounting','Engineering','Engineering'],
                })
df1

=================

employee    group
0    Bob    Accounting
1    Jake    Engineering
2    Lisa    Engineering
df2 = DataFrame({'employee':['Lisa','Bob','Jake'],
                'hire_date':[2004,2008,2012],
                })
df2
===============
    employee    hire_date
0    Lisa    2004
1    Bob    2008
2    Jake    2012

pd.merge(df1,df2)

pd.merge(df1,df2)


====================
employee    group    hire_date
0    Bob    Accounting    2008
1    Jake    Engineering    2012
2    Lisa    Engineering    2004

2) 多对一合并

df3 = DataFrame({
    'employee':['Lisa','Jake'],
    'group':['Accounting','Engineering'],
    'hire_date':[2004,2016]})
df3
employee    group    hire_date
0    Lisa    Accounting    2004
1    Jake    Engineering    2016
df4 = DataFrame({'group':['Accounting','Engineering','Engineering'],
                       'supervisor':['Carly','Guido','Steve']
                })
df4
===========
    group    supervisor
0    Accounting    Carly
1    Engineering    Guido
2    Engineering    Steve
pd.merge(df3,df4)

=====

employee    group    hire_date    supervisor
0    Lisa    Accounting    2004    Carly
1    Jake    Engineering    2016    Guido
2    Jake    Engineering    2016    Steve

3) 多对多合并

df1 = DataFrame({'employee':['Bob','Jake','Lisa'],
                 'group':['Accounting','Engineering','Engineering']})
df1
employee    group
0    Bob    Accounting
1    Jake    Engineering
2    Lisa    Engineering
df5 = DataFrame({'group':['Engineering','Engineering','HR'],
                'supervisor':['Carly','Guido','Steve']
                })
df5
    group    supervisor
0    Engineering    Carly
1    Engineering    Guido
2    HR    Steve
pd.merge(df1,df5,how='outer')

=======
    employee    group    supervisor
0    Bob    Accounting    NaN
1    Jake    Engineering    Carly
2    Jake    Engineering    Guido
3    Lisa    Engineering    Carly
4    Lisa    Engineering    Guido
5    NaN    HR    Steve

4) key的规范化

 
  • 当列冲突时,即有多个列名称相同时,需要使用on=来指定哪一个列作为key,配合suffixes指定冲突列名
df1 = DataFrame({'employee':['Jack',"Summer","Steve"],
                 'group':['Accounting','Finance','Marketing']})
df1

===============
    employee    group
0    Jack    Accounting
1    Summer    Finance
2    Steve    Marketing
f2 = DataFrame({'employee':['Jack','Bob',"Jake"],
                 'hire_date':[2003,2009,2012],
                'group':['Accounting','sell','ceo']})
df2

================

employee    group    hire_date
0    Jack    Accounting    2003
1    Bob    sell    2009
2    Jake    ceo    2012
pd.merge(df1,df2,on='group',how='outer')

==============
    employee_x    group    employee_y    hire_date
0    Jack    Accounting    Jack    2003.0
1    Summer    Finance    NaN    NaN
2    Steve    Marketing    NaN    NaN
3    NaN    sell    Bob    2009.0
4    NaN    ceo    Jake    2012.0

当两张表没有可进行连接的列时,可使用left_on和right_on手动指定merge中左右两边的哪一列列作为连接的列

df1 = DataFrame({'employee':['Bobs','Linda','Bill'],
                'group':['Accounting','Product','Marketing'],
               'hire_date':[1998,2017,2018]})
df1

==============
    employee    group    hire_date
0    Bobs    Accounting    1998
1    Linda    Product    2017
2    Bill    Marketing    2018
df5 = DataFrame({'name':['Lisa','Bobs','Bill'],
                'hire_dates':[1998,2016,2007]})

df5
=============
    hire_dates    name
0    1998    Lisa
1    2016    Bobs
2    2007    Bill
pd.merge(df1,df5,left_on='employee',right_on='name',how='outer')

==================
    employee    group    hire_date    hire_dates    name
0    Bobs    Accounting    1998.0    2016.0    Bobs
1    Linda    Product    2017.0    NaN    NaN
2    Bill    Marketing    2018.0    2007.0    Bill
3    NaN    NaN    NaN    1998.0    Lisa

5) 内合并与外合并:out取并集 inner取交集

 
  • 内合并:只保留两者都有的key(默认模式)
df6 = DataFrame({'name':['Peter','Paul','Mary'],
               'food':['fish','beans','bread']}
               )
df7 = DataFrame({'name':['Mary','Joseph'],
                'drink':['wine','beer']})
外合并 how='outer':补NaN
df6 = DataFrame({'name':['Peter','Paul','Mary'],
               'food':['fish','beans','bread']}
               )
df7 = DataFrame({'name':['Mary','Joseph'],
                'drink':['wine','beer']})

 

posted @ 2021-01-02 15:31  蜗牛般庄  阅读(421)  评论(0编辑  收藏  举报
Title
页脚 HTML 代码