POJ-2480 Longge's problem 积性函数
题目链接:http://poj.org/problem?id=2480
题意:多次求sigma(gcd(i,n), 1<=i<=n<2^32)
这题不能直接搜了,需要考虑函数的性质。
由gcd(i*j,n)=gcd(i,n)*gcd(j,n),所以gcd(i,n)为积性函数。
设f(n)=Σ(gcd(i,n)),由定理:积性函数的和函数也是积性函数(具体数学上有)。
所以f(x)=f(p1^a1*p2^a1*...*pn^an)=f(p1^a1)*f(p2*a2)*...*f(pn^an)。
只要对每个f(pi^ai)求解就可以了,f(pi^ai)=1*phi(pi^ai)+pi^a1*phi(pi^(ai-1))+...+pi^ai*phi(1)。
由phi(pi^ai) = pi^ai - pi^(ai-1),那么可以化简上面的式子:f(pi^ai) = ai * pi^ai - ai * pi^(ai-1) + pi^ai = pi^ai * (ai - ai/pi + 1);
1 //STATUS:C++_AC_47MS_116KB 2 #include <functional> 3 #include <algorithm> 4 #include <iostream> 5 //#include <ext/rope> 6 #include <fstream> 7 #include <sstream> 8 #include <iomanip> 9 #include <numeric> 10 #include <cstring> 11 #include <cassert> 12 #include <cstdio> 13 #include <string> 14 #include <vector> 15 #include <bitset> 16 #include <queue> 17 #include <stack> 18 #include <cmath> 19 #include <ctime> 20 #include <list> 21 #include <set> 22 //#include <map> 23 using namespace std; 24 //#pragma comment(linker,"/STACK:102400000,102400000") 25 //using namespace __gnu_cxx; 26 //define 27 #define pii pair<int,int> 28 #define mem(a,b) memset(a,b,sizeof(a)) 29 #define lson l,mid,rt<<1 30 #define rson mid+1,r,rt<<1|1 31 #define PI acos(-1.0) 32 //typedef 33 typedef __int64 LL; 34 typedef unsigned __int64 ULL; 35 //const 36 const int N=110; 37 const int INF=0x3f3f3f3f; 38 const int MOD=100000,STA=8000010; 39 const LL LNF=1LL<<60; 40 const double EPS=1e-8; 41 const double OO=1e15; 42 const int dx[4]={-1,0,1,0}; 43 const int dy[4]={0,1,0,-1}; 44 const int day[13]={0,31,28,31,30,31,30,31,31,30,31,30,31}; 45 //Daily Use ... 46 inline int sign(double x){return (x>EPS)-(x<-EPS);} 47 template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;} 48 template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;} 49 template<class T> inline T lcm(T a,T b,T d){return a/d*b;} 50 template<class T> inline T Min(T a,T b){return a<b?a:b;} 51 template<class T> inline T Max(T a,T b){return a>b?a:b;} 52 template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);} 53 template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);} 54 template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));} 55 template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));} 56 //End 57 58 LL ans,n; 59 60 int main(){ 61 // freopen("in.txt","r",stdin); 62 LL i,j; 63 LL cnt,t; 64 while(~scanf("%I64d",&n)){ 65 ans=n;t=1; 66 for(i=2;i*i<=n;i++){ 67 if(n%i==0){ 68 cnt=0 ; 69 while(n%i==0){ 70 cnt++; 71 n/=i; 72 } 73 ans+=ans*cnt/i*(i-1); 74 } 75 } 76 if(n>1)ans=ans*(n*2-1)/n; 77 78 printf("%I64d\n",ans); 79 } 80 return 0; 81 }