Bzoj-2820 YY的GCD Mobius反演,分块

  题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2820

  题意:多次询问,求1<=x<=N, 1<=y<=M且gcd(x,y)为质数有多少对。

  首先,   

  由于这里是多次询问,并且数据很大,显然不能直接求解,需要做如下处理。。

  整数的除法是满足结合律的,然后我们设T=p*d,有:

  注意到后面部分是可以预处理出来的,那么整个ans就可以用分块处理来求了,设

  那么有,考虑当p|x时,根据莫比菲斯mu(x)的性质,px除以其它非p的质数因数都为0,所以g(px)=mu(x)。当p!|x时,除数为p时为mu(x),否则其它的和为-g(x),因为这里还乘了一个p所以要变反。然后O(n)预处理下就可以了。。

  1 //STATUS:C++_AC_3660MS_274708KB
  2 #include <functional>
  3 #include <algorithm>
  4 #include <iostream>
  5 //#include <ext/rope>
  6 #include <fstream>
  7 #include <sstream>
  8 #include <iomanip>
  9 #include <numeric>
 10 #include <cstring>
 11 #include <cassert>
 12 #include <cstdio>
 13 #include <string>
 14 #include <vector>
 15 #include <bitset>
 16 #include <queue>
 17 #include <stack>
 18 #include <cmath>
 19 #include <ctime>
 20 #include <list>
 21 #include <set>
 22 //#include <map>
 23 using namespace std;
 24 //#pragma comment(linker,"/STACK:102400000,102400000")
 25 //using namespace __gnu_cxx;
 26 //define
 27 #define pii pair<int,int>
 28 #define mem(a,b) memset(a,b,sizeof(a))
 29 #define lson l,mid,rt<<1
 30 #define rson mid+1,r,rt<<1|1
 31 #define PI acos(-1.0)
 32 //typedef
 33 typedef long long LL;
 34 typedef unsigned long long ULL;
 35 //const
 36 const int N=10000010;
 37 const int INF=0x3f3f3f3f;
 38 const int MOD=100000,STA=8000010;
 39 const LL LNF=1LL<<60;
 40 const double EPS=1e-8;
 41 const double OO=1e15;
 42 const int dx[4]={-1,0,1,0};
 43 const int dy[4]={0,1,0,-1};
 44 const int day[13]={0,31,28,31,30,31,30,31,31,30,31,30,31};
 45 //Daily Use ...
 46 inline int sign(double x){return (x>EPS)-(x<-EPS);}
 47 template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}
 48 template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
 49 template<class T> inline T lcm(T a,T b,T d){return a/d*b;}
 50 template<class T> inline T Min(T a,T b){return a<b?a:b;}
 51 template<class T> inline T Max(T a,T b){return a>b?a:b;}
 52 template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);}
 53 template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);}
 54 template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));}
 55 template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));}
 56 //End
 57  
 58 LL sum[N],g[N];
 59 int isprime[N],mu[N],prime[N];
 60 int cnt;
 61 int T,n,m;
 62  
 63 void Mobius(int n)
 64 {
 65     int i,j;
 66     //Init isprime[N],mu[N],prime[N],全局变量初始为0
 67     cnt=0;mu[1]=1;
 68     for(i=2;i<=n;i++){
 69         if(!isprime[i]){
 70             prime[cnt++]=i;
 71             mu[i]=-1;
 72             g[i]=1;
 73         }
 74         for(j=0;j<cnt && i*prime[j]<=n;j++){
 75             isprime[i*prime[j]]=1;
 76             if(i%prime[j]){
 77                 mu[i*prime[j]]=-mu[i];
 78                 g[i*prime[j]]=mu[i]-g[i];
 79             }
 80             else {
 81                 mu[i*prime[j]]=0;
 82                 g[i*prime[j]]=mu[i];
 83                 break;
 84             }
 85         }
 86     }
 87     for(i=1;i<=n;i++)sum[i]=sum[i-1]+g[i];
 88 }
 89  
 90 int main(){
 91  //   freopen("in.txt","r",stdin);
 92     int i,j,la;
 93     LL ans;
 94     Mobius(10000000);
 95     scanf("%d",&T);
 96     while(T--)
 97     {
 98         scanf("%d%d",&n,&m);
 99  
100         if(n>m)swap(n,m);
101         ans=0;
102         for(i=1;i<=n;i=la+1){
103             la=Min(n/(n/i),m/(m/i));
104             ans+=(sum[la]-sum[i-1])*(n/i)*(m/i);
105         }
106  
107         printf("%lld\n",ans);
108     }
109     return 0;
110 }

 

posted @ 2013-08-25 11:56  zhsl  阅读(683)  评论(1编辑  收藏  举报