ZOJ-3640 Help Me Escape 概率DP

  题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3640

  题意:Cain被困在一个洞穴里,洞穴有n个出口,每个出口有一个难度值C[i],Cain有一个初始的战斗值f。现在Cain随机选择一个出口,如果f大于出后的难度,那么Cain将会花floor( (1+sqrt(5))/2*C[i]*C[i] )天出去,否则Cain的f将会增加C[i]并且消耗掉一天时间,然后重新尝试。求Cain逃出洞穴天数的期望值。。。

  首先用BFS把Cain所有的f值的可能情况求出来,然后就可以列出方程,这里因为期望都是由大的f推过来,所以f直接从大到小递推消元就可以了。。

  1 //STATUS:C++_AC_730MS_1436KB
  2 #include <functional>
  3 #include <algorithm>
  4 #include <iostream>
  5 //#include <ext/rope>
  6 #include <fstream>
  7 #include <sstream>
  8 #include <iomanip>
  9 #include <numeric>
 10 #include <cstring>
 11 #include <cassert>
 12 #include <cstdio>
 13 #include <string>
 14 #include <vector>
 15 #include <bitset>
 16 #include <queue>
 17 #include <stack>
 18 #include <cmath>
 19 #include <ctime>
 20 #include <list>
 21 #include <set>
 22 #include <map>
 23 using namespace std;
 24 #pragma comment(linker,"/STACK:102400000,102400000")
 25 //using namespace __gnu_cxx;
 26 //define
 27 #define pii pair<int,int>
 28 #define mem(a,b) memset(a,b,sizeof(a))
 29 #define lson l,mid,rt<<1
 30 #define rson mid+1,r,rt<<1|1
 31 #define PI acos(-1.0)
 32 //typedef
 33 //typedef __int64 LL;
 34 //typedef unsigned __int64 ULL;
 35 //const
 36 const int N=40010;
 37 const int INF=0x3f3f3f3f;
 38 //const LL MOD=1000000007,STA=8000010;
 39 //const LL LNF=1LL<<55;
 40 const double EPS=1e-9;
 41 const double OO=1e50;
 42 const int dx[8]={-1,-1,0,1,1,1,0,-1};
 43 const int dy[8]={0,1,1,1,0,-1,-1,-1};
 44 const int day[13]={0,31,28,31,30,31,30,31,31,30,31,30,31};
 45 //Daily Use ...
 46 inline int sign(double x){return (x>EPS)-(x<-EPS);}
 47 template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}
 48 template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
 49 template<class T> inline T lcm(T a,T b,T d){return a/d*b;}
 50 template<class T> inline T Min(T a,T b){return a<b?a:b;}
 51 template<class T> inline T Max(T a,T b){return a>b?a:b;}
 52 template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);}
 53 template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);}
 54 template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));}
 55 template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));}
 56 //End
 57 
 58 double E[N],d[N];
 59 int w[N],id[N],c[N],vis[N];
 60 int n,f,cnt;
 61 
 62 void bfs(int s)
 63 {
 64     int i,x;
 65     queue<int> q;
 66     q.push(s);
 67     mem(vis,0);
 68     vis[s]=1;
 69     while(!q.empty()){
 70         x=q.front();q.pop();
 71         for(i=1;i<=n;i++){
 72             if(x>c[i] || vis[x+c[i]])continue;
 73             w[cnt++]=x+c[i];
 74             vis[x+c[i]]=1;
 75             q.push(x+c[i]);
 76         }
 77     }
 78 }
 79 
 80 int main(){
 81  //   freopen("in.txt","r",stdin);
 82     int i,j;
 83     double t=(1+sqrt(5.0))/2,p;
 84     while(~scanf("%d%d",&n,&f))
 85     {
 86         p=1.0/n;
 87         for(i=1;i<=n;i++){
 88             scanf("%d",&c[i]);
 89             d[i]=floor(t*c[i]*c[i]);
 90         }
 91 
 92         w[cnt=0]=f;cnt++;
 93         bfs(f);
 94         sort(w,w+cnt);
 95         for(i=0;i<cnt;i++)id[w[i]]=i;
 96         for(i=cnt-1;i>=0;i--){
 97             E[i]=0;
 98             for(j=1;j<=n;j++){
 99                 if(w[i]>c[j])E[i]+=p*d[j];
100                 else E[i]+=p*(E[id[w[i]+c[j]]]+1);
101             }
102         }
103 
104         printf("%.3lf\n",E[0]);
105     }
106     return 0;
107 }

 

posted @ 2013-08-17 22:33  zhsl  阅读(269)  评论(0编辑  收藏  举报