回归:预测数值型数据

何为回归?

“回归”一词是由达尔文的表兄弟Francis Galton发明的。Galton于1877年完成了第一次回归预测,目的是根据上一代豌豆种子(双亲)的尺寸来预测下一代豌豆种子(孩子)的尺寸。

Galton在大量对象上应用了回归分析,甚至包括人的身高预测。他注意到,如果双亲的高高度比平均高度高,他们的子女也倾向于比平均高度高,但尚不及双亲(笔者感觉未必,Galton并未考虑物质条件的发展会带来整体身高的增加,至少笔者感觉80,90的人普遍比父母高)。孩子的高度向着平均高度“回归”。

在软件测试方法论中有回归测试一说,大概是指保证原feature正确,没有收到改动的影响。

 

用线性回归找到最佳拟合直线

回归的目的是预测数值型的目标值。最直接的办法就是求得一个回归方程(regression equation),讲已知条件x代入方程得到预测结果y。

说道回归,一般都是指线性回归,线性回归意味着可以将输入项分别乘以一些常量,再将结果加起来得到输出。

 

如何求回归方程的主要步骤是求回归系数,一旦有了回归系数,就可以构造出回归方程。

假定输入数据存放在矩阵X中,而回归系数存放在向量w中,那么对于给定的数据X1,预测结果将会通过Y1=XT1w给出。

那么,如果通过已知的x和y关系集合,找到w呢?一个常用的方法就是找出使误差最小的w。这里的误差指的是预测y值和真实y值之间的差值。可以通过使用该误差的累加得出x,y关系集合的最佳w。可是由于累加将使正差值和负差值相互抵消,所以在计算的时候采用平方误差:

用矩阵表示还可以写作(y-Xw)(y-Xw)。如果对w求导,得到XT(Y-Xw),令其等于0,解出w:

w上的小标记表示,这是当前可以估计出的w的最优解。

注意,上述公式中包含(XTX-1,也就是需要对矩阵求逆。因此这个方程只在逆矩阵存在的情况下适用。

除了矩阵方法外,还有很多其他的方法可以求解w,比如“普通最小二乘法”。

 

求w的代码:

def loadDataSet(fileName):      #general function to parse tab -delimited floats
    numFeat = len(open(fileName).readline().split('\t')) - 1 #get number of fields
    dataMat = []; labelMat = []
    fr = open(fileName)
    for line in fr.readlines():
        lineArr =[]
        curLine = line.strip().split('\t')
        for i in range(numFeat):
            lineArr.append(float(curLine[i]))
        dataMat.append(lineArr)
        labelMat.append(float(curLine[-1]))
    return dataMat,labelMat



def standRegres(xArr,yArr):
    xMat = mat(xArr); yMat = mat(yArr).T
    xTx = xMat.T*xMat
    if linalg.det(xTx) == 0.0: #判断是否存在逆矩阵
        print "This matrix is singular, cannot do inverse"
        return
    ws = xTx.I * (xMat.T*yMat)
    return ws 

 

局部加权线性回归

线性回归的一个问题是有可能出现欠拟合现象,因为它要求的是具有最小均方误差的无偏估计。显而易见,如果模型欠拟合将不能取得最好的预测效果。所以有些方法允许在估计中引入一些偏差,从而降低预测的均方误差。

其中的一个方法是局部加权线性回归(Locally Weighted Linear Regression, LWLR)。在该算法中个,我们给待预测点的附近的每个点赋予一定的权重,在这个子集上基于最小均方差来进行普通的回归。与KNN一样,这种算法每次预测均需要事先取出对应的数据子集。该算法解除回归系数w的形式如下:

其中w是一个矩阵,用来给每个数据点赋予权重。

LWLR使用“核”来对附近的点赋予更高的权重。核的类型可以自由选择,最常用的核就是高斯核,高斯核对应的权重如下:

上述公式中包含了一个需要用户指定的参数K,它决定了对附近的点赋予多大的权重。

 

LWLR的实现代码:

def lwlr(testPoint,xArr,yArr,k=1.0):
    xMat = mat(xArr); yMat = mat(yArr).T
    m = shape(xMat)[0]
    weights = mat(eye((m)))
    for j in range(m):                      #next 2 lines create weights matrix
        diffMat = testPoint - xMat[j,:]     #
        weights[j,j] = exp(diffMat*diffMat.T/(-2.0*k**2))
    xTx = xMat.T * (weights * xMat)
    if linalg.det(xTx) == 0.0:
        print "This matrix is singular, cannot do inverse"
        return
    ws = xTx.I * (xMat.T * (weights * yMat))
    return testPoint * ws

def lwlrTest(testArr,xArr,yArr,k=1.0):  #loops over all the data points and applies lwlr to each one
    m = shape(testArr)[0]
    yHat = zeros(m)
    for i in range(m):
        yHat[i] = lwlr(testArr[i],xArr,yArr,k)
    return yHat

 

posted @ 2015-11-13 22:38  软件心理学工程师  Views(639)  Comments(0Edit  收藏  举报