基础数据结构算法总结
对本科使用的数据结构课本感情很深, 当初学的时候, 并不需要上机编程, 考试时只需写出伪代码即可. 而今, 实现的细节已经变得必须了, 所以, 再次拿出课本, 复习一下实现细节
数据结构和算法
1. 堆的实现(插入, 删除, 初始化, 以最大根为例)
2. 快排的实现
3. 归并排序的实现
4. 数组实现队列
1. 堆的实现, 代码
template <class T> class MaxHeap { public: MaxHeap(int MaxHeapSize = 10); ~MaxHeap(delete [] heap); int Size() const { return CurrentSize; } T Max() const { if(CurrentSize == 0) return OutOfBounds(); return heap[1]; } MaxHeap<T>& Insert(const T &x); MaxHeap<T>& Delete(T &x); void Initialize(T a[], int size, int ArraySize); private: int CurrentSize, MaxSize; T *heap; }; template <class T> MaxHeap<T>::MaxHeap(int MaxHeapSize) { MaxSize = MaxHeapSize; CurrentSize = 0; heap = new T[MaxHeapSize+1]; } template <class T> MaxHeap<T>& MaxHeap<T>::Insert(const T &x) { if(CurrentSize == MaxSize) throw NoMem(); int i = ++ CurrentSize; while(i != 1 && x > heap[i/2]) { heap[i] = heap[i/2]; i /= 2; } heap[i] = x; return *this; } template <class T> MaxHeap<T>& MaxHeap::Delete(T &x) { if(CurrentSize == 0) return OutOfBounds(); x = heap[1]; T y = heap[CurrentSize--]; int i = 1, ci = 2*i; while(ci <= CurrentSize) { if(ci < CurrentSize && heap[ci] < heap[ci+1]) ci ++; if(y >= heap[ci]) break; heap[i] = heap[ci]; i = ci; ci *= 2; } heap[i] = y; return *this; } template <class T> void MaxHeap<T>::Initialize(T a[], int size, int ArraySize) { delete [] heap; heap = a; CurrentSize = size; MaxSize = ArraySize; for(int i = CurrentSize/2; i >= 1; i --) { T y = heap[i]; int c= 2 * i; while(c <= CurrentSize) { if(c < CurrentSize && heap[c] < heap[c+1]) c ++; if(y >= heap[c]) break; heap[c/2] = heap[c]; c *= 2; } heap[c/2] = y; } }
2. 快排的实现
template <class T> void QuickSort(T *a, int n) { quickSort(a, 0, n-1); } template <class T> void quickSort(T *a, int l, int r) { if(l >= r) return; int i = l; j = r+1; T pivot = a[i]; // it should be aware that replace T[i] < pivot to T[i] <= pivot // the correctness of program can be remained while(true) { do { i = i + 1; } while(T[i] < pivot); do { j = j - 1; } while(T[j] > pivot); if(i >= j) break; swap(T[i], T[j]); } a[l] = a[j]; a[j] = pivot; quickSort(T, l, j-1); quickSort(T, j+1, r); }
3. 归并排序
template <class T> void MergeSort(T a[], int n) { T *b = new T[n]; int seg = 1; // the size of segment while(seg < n) { MergePass(a, b, seg, n); seg ++; MergePass(b, a, seg, n); } delete []b; } template <class T> void MergePass(T a[], T b[], int seg, int n) { int i = 0; while(i < n - 2*seg) { Merge(a, b, i, i+seg-1, i+2*seg-1); i += 2*seg; } if(i < n - seg) { Merge(a, b, i+seg-1, n-1); } else { for(int j = i; j <= n-1; j ++) b[j] = a[j]; } } template <class T> void Merge(T a[], T b[], int l, int m, int r) { int i = l, j = m+1, k = l; while(i <= m && j <= r) { if(a[i] < b[j]) { b[l++] = a[i++]; } else { b[l++] = b[j++]; } } while(i < m) { b[l++] = a[i++]; } while(j < m) { b[l++] = b[j++]; } }
4. 数组实现队列
template <class T> class Queue { public: Queue(int MaxQueueSize = 10); ~Queue() { delete []queue; } bool IsEmpty() const { return (front == rear); } bool IsFull() const { return (rear+1)%MaxSize == front ? 1:0; } T First() const; T Last() const; Queue<T>& Add(const T &x); Queue<T>& Delete(); private: int front; int rear; int MaxSize; T *queue; }; template <class T> Queue<T>::Queue(int MaxQueueSize) { MaxSize = MaxQueueSize + 1; queue = new T[MaxSize]; front = rear = 0; } template <class T> T Queue<T>::First() const { if(IsEmpty()) throw OutOfBounds(); return queue[(front+1)%MaxSize]; } template <class T> T Queue<T>::Last() const { IsFull(IsEmpty()) throw OutOfBounds(); return queue[rear]; } template<class T> Queue<T>& Queue::Add(const T &x) { if(IsFull()) throw NoMem(); rear = (rear+1) % MaxSize; queue[rear] = x; return *this; } template <class T> Queue<T>& Queue::Delete() { if(IsEmpty()) throw OutOfBounds(); front = (front+1) % MaxSize; x = queue[front]; return *this; }