BZOJ1131 [POI2008]Sta 其他

原文链接http://www.cnblogs.com/zhouzhendong/p/8081100.html


题目传送门 - BZOJ1131


题意概括

  给出一个N个点的树,找出一个点来,以这个点为根的树时,所有点的深度之和最大。


题解

  嘻,这题不卡栈。

  假设以1为根

  先跑一遍dfs,算出每一个子树的节点数size,同时算出以1为根节点的深度和。

  然后再跑一遍dfs,这一回,我们就可以算答案了。

  假设我们要把树根从一条边的一个节点移向另一个节点,那么,这两个节点为根的答案差就是这条边两端的节点个数差。因为其中一个节点代表的子树上的节点都要多走一步到根,而另一边少走一步。这样就可以在O(n)的时间复杂度内solve这一题了。


代码

#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long LL;
const int N=1000005;
struct Gragh{
	int cnt,y[N*2],nxt[N*2],fst[N];
	void clear(){
		cnt=0;
		memset(fst,0,sizeof fst);
	}
	void add(int a,int b){
		y[++cnt]=b,nxt[cnt]=fst[a],fst[a]=cnt;
	}
}g;
int n,size[N],ans;
LL sum[N],res[N];
void dfs1(int rt,int pre){
	size[rt]=1,sum[rt]=0;
	for (int i=g.fst[rt];i;i=g.nxt[i])
		if (g.y[i]!=pre){
			int s=g.y[i];
			dfs1(s,rt);
			size[rt]+=size[s];
			sum[rt]+=sum[s];
		}
	sum[rt]+=size[rt]-1;
}
void dfs2(int rt,int pre){
	res[rt]=res[pre]-size[rt]+(n-size[rt]);
	if (!ans||res[rt]>res[ans]||(res[rt]==res[ans]&&rt<ans))
		ans=rt;
	for (int i=g.fst[rt];i;i=g.nxt[i])
		if (g.y[i]!=pre)
			dfs2(g.y[i],rt);
}
int main(){
	g.clear();
	scanf("%d",&n);
	for (int i=1,a,b;i<n;i++){
		scanf("%d%d",&a,&b);
		g.add(a,b);
		g.add(b,a);
	}
	dfs1(1,0);
	ans=0;
	res[0]=sum[1]+n;
	dfs2(1,0);
	printf("%d",ans);
	return 0;
}

  

posted @ 2017-12-21 16:09  zzd233  阅读(259)  评论(0编辑  收藏  举报