AtCoder Grand Contest 031 (AGC031) D - A Sequence of Permutations 其他
原文链接https://www.cnblogs.com/zhouzhendong/p/AGC031D.html
前言
比赛的时候看到这题之后在草稿纸上写下的第一个式子就是
$$f(p,q) = pq^{-1}$$
然后就再也没有改过。
发现了一堆奇奇怪怪的性质可是一直没有用。
直到官方题解出来的时候:
$$\Huge f(p,q) = qp^{-1}$$
题解
我们可以把前面的几个 $a_i$ 写出来。
$$\begin {eqnarray*}a_1 &=& p\\a_2 &=& q\\ a_3 &=& qp^{-1} \\ a_4 &=& qp^{-1} q^{-1}\\ a_5&=&qp^{-1}q^{-1}pq^{-1}\\a_6&=&qp^{-1}q^{-1}ppq^{-1}\\a_7&=&qp^{-1}q^{-1}pqpq^{-1}\\a_8&=&qp^{-1}q^{-1}pqp^{-1}qpq^{-1}\end{eqnarray*}$$
设
$$A = qp^{-1}q^{-1}p$$
则可以归纳证明:
$$\forall i>6, a_i = Aa_{i-6} A^{-1}$$
于是直接算一下置换 $A$ 的复合幂就好了。
算复合幂只要写成轮换的形式就可以做到时间复杂度 $O(n)$ ,我偷懒写了 $O(n\log n)$ 的快速幂。
代码
#pragma GCC optimize("Ofast","inline") #include <bits/stdc++.h> #define clr(x) memset(x,0,sizeof (x)) #define For(i,a,b) for (int i=a;i<=b;i++) #define Fod(i,b,a) for (int i=b;i>=a;i--) #define pb push_back #define mp make_pair #define fi first #define se second #define _SEED_ ('C'+'L'+'Y'+'A'+'K'+'I'+'O'+'I') #define outval(x) printf(#x" = %d\n",x) #define outvec(x) printf("vec "#x" = ");for (auto _v : x)printf("%d ",_v);puts("") #define outtag(x) puts("----------"#x"----------") #define outarr(a,L,R) printf(#a"[%d...%d] = ",L,R);\ For(_v2,L,R)printf("%d ",a[_v2]);puts(""); using namespace std; typedef long long LL; typedef vector <int> vi; LL read(){ LL x=0,f=0; char ch=getchar(); while (!isdigit(ch)) f|=ch=='-',ch=getchar(); while (isdigit(ch)) x=(x<<1)+(x<<3)+(ch^48),ch=getchar(); return f?-x:x; } const int N=100005; int n,k; vi p,q,ip,iq,a[10]; vi Inv(vi A){ vi B(n); For(i,0,n-1) B[A[i]]=i; return B; } vi Mul(vi A,vi B){ vi C(n); For(i,0,n-1) C[i]=A[B[i]]; return C; } vi Pow(vi x,int y){ vi ans; For(i,0,n-1) ans.pb(i); for (;y;y>>=1,x=Mul(x,x)) if (y&1) ans=Mul(ans,x); return ans; } int main(){ n=read(),k=read(); For(i,1,n) p.pb(read()-1); For(i,1,n) q.pb(read()-1); ip=Inv(p),iq=Inv(q); a[1]=p,a[2]=q; For(i,3,6) a[i]=Mul(a[i-1],Inv(a[i-2])); int len=(k-1)/6; vi cir=Pow(Mul(q,Mul(ip,Mul(iq,p))),len); vi rem=a[k-len*6]; vi res=Mul(cir,Mul(rem,Inv(cir))); For(i,0,n-1) printf("%d ",res[i]+1); return 0; }