CSDN博客地址

[Python图像处理]七.图像阈值化处理及算法比对

图像的二值化或阈值化(Binarization)旨在提取图像中的目标物体,将背景以及噪声区分开来。通常会设定一个阈值T,通过T将图像的像素划分为两类:大于T的像素群和小于T的像素群。
灰度转换处理后的图像中,每个像素都只有一个灰度值,其大小表示明暗程度。二值化处理可以将图像中的像素划分为两类颜色,常用的二值化算法如公式1所示:

{Y=0,gray<TY=255,gray>=T
{Y=0,gray<TY=255,gray>=T​
当灰度Gray小于阈值T时,其像素设置为0,表示黑色;当灰度Gray大于或等于阈值T时,其Y值为255,表示白色。
Python OpenCV中提供了阈值函数threshold()实现二值化处理,其公式及参数如下图所示:
retval, dst = cv2.threshold(src, thresh, maxval, type)

 

二进制阈值化

该方法先要选定一个特定的阈值量,比如127

1) 大于等于127的像素点的灰度值设定为最大值

2) 灰度值小于127的像素点的灰度值设置为0

例如: 156->255 89->0

关键字为cv2.THRESH_BINARY,完整代码如下

import cv2
def test22():
    src = cv2.imread("rose.jpg")
    # 灰度图片转换
    GrayImage = cv2.cvtColor(src, cv2.COLOR_BGR2BGRA)
    # 二进制阈值化处理
    r, b = cv2.threshold(GrayImage, 127, 255, cv2.THRESH_BINARY)
    # 显示图像
    cv2.imshow("src", src)
    cv2.imshow("result", b)

    if cv2.waitKey(0) == 27:
        cv2.destroyAllWindows()

test22()

效果如下:

 反二进制阈值化

该方法与二进制阈值化方法相似,先要选定一个特定的灰度值作为阈值,比如127

1) 大于127的像素点的灰度值设定为0

2) 小于该阈值的灰度值设定为255

例如:156->0   89->255

关键字为cv2.THRESH_BINARY_INV

代码如下:

import cv2
def test22():
    src = cv2.imread("rose.jpg")
    # 灰度图片转换
    GrayImage = cv2.cvtColor(src, cv2.COLOR_BGR2BGRA)
    # 二进制阈值化处理
    r, b = cv2.threshold(GrayImage, 127, 255, cv2.THRESH_BINARY_INV)
    # 显示图像
    cv2.imshow("src", src)
    cv2.imshow("result", b)

    if cv2.waitKey(0) == 27:
        cv2.destroyAllWindows()

test22()

效果如下:

截断阈值化

该方法需要选定一个阈值,图像中大于该阈值的像素点被设定为该阈值,小于该阈值的保持不变。

1) 大于等于127像素点的灰度值设定为该阈值127

2) 小于该阈值的灰度值不变

例如: 163-> 127     89->89

关键字cv2.THRESH_TRUNC,完整代码如下

import cv2
def test22():
    src = cv2.imread("rose.jpg")
    # 灰度图片转换
    GrayImage = cv2.cvtColor(src, cv2.COLOR_BGR2BGRA)
    # 二进制阈值化处理
    r, b = cv2.threshold(GrayImage, 127, 255, cv2.THRESH_TRUNC)
    # 显示图像
    cv2.imshow("src", src)
    cv2.imshow("result", b)

    if cv2.waitKey(0) == 27:
        cv2.destroyAllWindows()

test22()

效果如下:

 反阈值化为0

该方法先选定一个阈值,比如127

(1) 大于等于阈值127的像素点变为0
(2) 小于该阈值的像素点值保持不变

例如: 128->0   89->89

关键字为cv2.THRESH_TOZERO_INV,完整代码如下:

import cv2
def test22():
    src = cv2.imread("rose.jpg")
    # 灰度图片转换
    GrayImage = cv2.cvtColor(src, cv2.COLOR_BGR2BGRA)
    # 二进制阈值化处理
    r, b = cv2.threshold(GrayImage, 127, 255, cv2.THRESH_TOZERO_INV)
    # 显示图像
    cv2.imshow("src", src)
    cv2.imshow("result", b)

    if cv2.waitKey(0) == 27:
        cv2.destroyAllWindows()

test22()

效果如下:

阈值为0

该方法先选定一个阈值,比如127
(1) 大于等于阈值127的像素点,值保持不变
(2) 小于该阈值的像素点值设置为0

例如: 163->163    102->0

关键字为cv2.THRESH_TOZERO,完整代码如下:

import cv2
def test22():
    src = cv2.imread("rose.jpg")
    # 灰度图片转换
    GrayImage = cv2.cvtColor(src, cv2.COLOR_BGR2BGRA)
    # 二进制阈值化处理
    r, b = cv2.threshold(GrayImage, 127, 255, cv2.THRESH_TOZERO)
    # 显示图像
    cv2.imshow("src", src)
    cv2.imshow("result", b)

    if cv2.waitKey(0) == 27:
        cv2.destroyAllWindows()

test22()

效果如下:

 

 

转自: https://blog.csdn.net/Eastmount/article/details/83548652

posted @ 2020-06-16 22:13  Yi_warmth  阅读(696)  评论(0编辑  收藏  举报
CSDN博客地址