FM算法keras实现
import numpy as np
import pandas as pd
import tensorflow as tf
import keras
import os
import matplotlib.pyplot as plt
from keras.layers import Layer,Dense,Dropout,Input
from keras import Model,activations
from keras.optimizers import Adam
from keras import backend as K
from keras.layers import Layer
from sklearn.datasets import load_breast_cancer
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ['CUDA_VISIBLE_DEVICES'] = "0"
class FM(Layer):
def __init__(self, output_dim, latent=10, activation='relu', **kwargs):
self.latent = latent
self.output_dim = output_dim
self.activation = activations.get(activation)
super(FM, self).__init__(**kwargs)
def build(self, input_shape):
self.b = self.add_weight(name='W0',
shape=(self.output_dim,),
trainable=True,
initializer='zeros')
self.w = self.add_weight(name='W',
shape=(input_shape[1], self.output_dim),
trainable=True,
initializer='random_uniform')
self.v= self.add_weight(name='V',
shape=(input_shape[1], self.latent),
trainable=True,
initializer='random_uniform')
super(FM, self).build(input_shape)
def call(self, inputs, **kwargs):
x = inputs
x_square = K.square(x)
xv = K.square(K.dot(x, self.v))
xw = K.dot(x, self.w)
p = 0.5*K.sum(xv-K.dot(x_square, K.square(self.v)), 1)
rp = K.repeat_elements(K.reshape(p, (-1, 1)), self.output_dim, axis=-1)
f = xw + rp + self.b
output = K.reshape(f, (-1, self.output_dim))
return output
def compute_output_shape(self, input_shape):
assert input_shape and len(input_shape)==2
return input_shape[0],self.output_dim
data = load_breast_cancer()["data"]
target = load_breast_cancer()["target"]
K.clear_session()
print(target)
inputs = Input(shape=(30,))
out = FM(20)(inputs)
out = Dense(15, activation='sigmoid')(out)
out = Dense(1, activation='sigmoid')(out)
model=Model(inputs=inputs, outputs=out)
model.compile(loss='mse',
optimizer='adam',
metrics=['acc'])
model.summary()
h=model.fit(data, target, batch_size=1, epochs=10, validation_split=0.2)
#%%
plt.plot(h.history['acc'],label='acc')
plt.plot(h.history['val_acc'],label='val_acc')
plt.xlabel('epoch')
plt.ylabel('acc')
#%%
I'm a fucKing fake coder!
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 地球OL攻略 —— 某应届生求职总结
· 周边上新:园子的第一款马克杯温暖上架
· Open-Sora 2.0 重磅开源!
· 提示词工程——AI应用必不可少的技术
· .NET周刊【3月第1期 2025-03-02】