FM算法keras实现


import numpy as np
import pandas as pd
import tensorflow as tf
import keras
import os

import matplotlib.pyplot as plt

from keras.layers import Layer,Dense,Dropout,Input
from keras import Model,activations
from keras.optimizers import Adam
from keras import backend as K
from keras.layers import Layer
from sklearn.datasets import load_breast_cancer

os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ['CUDA_VISIBLE_DEVICES'] = "0"
class FM(Layer):
    def __init__(self, output_dim, latent=10,  activation='relu', **kwargs):
        self.latent = latent
        self.output_dim = output_dim
        self.activation = activations.get(activation)
        super(FM, self).__init__(**kwargs)

    def build(self, input_shape):
        self.b = self.add_weight(name='W0',
                                  shape=(self.output_dim,),
                                  trainable=True,
                                 initializer='zeros')
        self.w = self.add_weight(name='W',
                                 shape=(input_shape[1], self.output_dim),
                                 trainable=True,
                                 initializer='random_uniform')
        self.v= self.add_weight(name='V',
                                 shape=(input_shape[1], self.latent),
                                 trainable=True,
                                initializer='random_uniform')
        super(FM, self).build(input_shape)

    def call(self, inputs, **kwargs):
        x = inputs
        x_square = K.square(x)

        xv = K.square(K.dot(x, self.v))
        xw = K.dot(x, self.w)

        p = 0.5*K.sum(xv-K.dot(x_square, K.square(self.v)), 1)

        rp = K.repeat_elements(K.reshape(p, (-1, 1)), self.output_dim, axis=-1)

        f = xw + rp + self.b

        output = K.reshape(f, (-1, self.output_dim))

        return output

    def compute_output_shape(self, input_shape):
        assert input_shape and len(input_shape)==2
        return input_shape[0],self.output_dim


data = load_breast_cancer()["data"]
target = load_breast_cancer()["target"]

K.clear_session()
print(target)
inputs = Input(shape=(30,))
out = FM(20)(inputs)
out = Dense(15, activation='sigmoid')(out)
out = Dense(1, activation='sigmoid')(out)

model=Model(inputs=inputs, outputs=out)
model.compile(loss='mse',
              optimizer='adam',
              metrics=['acc'])
model.summary()

h=model.fit(data, target, batch_size=1, epochs=10, validation_split=0.2)

#%%

plt.plot(h.history['acc'],label='acc')
plt.plot(h.history['val_acc'],label='val_acc')
plt.xlabel('epoch')
plt.ylabel('acc')

#%%
posted @   Fake_coder  阅读(1025)  评论(0编辑  收藏  举报
编辑推荐:
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
阅读排行:
· 地球OL攻略 —— 某应届生求职总结
· 周边上新:园子的第一款马克杯温暖上架
· Open-Sora 2.0 重磅开源!
· 提示词工程——AI应用必不可少的技术
· .NET周刊【3月第1期 2025-03-02】
点击右上角即可分享
微信分享提示