[Project Euler] 来做欧拉项目练习题吧: 题目006
[Project Euler] 来做欧拉项目练习题吧: 题目006
周银辉
问题描述:
The sum of the squares of the first ten natural numbers is,
The square of the sum of the first ten natural numbers is,
Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 385 = 2640.
Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum.
问题分析:
嗯,这是个纯数学题了,有数学公式的:
(1+2+3...+n)^2 = ((1+n)*n/2)^2
(1^2 + 2^2 + 3^2 +...+ n^2) = 1/6 * n(n+1)(2n+1)
1+2+3+...+n这是等差数列,所以(1+n)*n/2
而(1^2 + 2^2 + 3^2 +...+ n^2) 嘛,可以这样推导:
首先,
= (n^2+n)*(2n+1) - (n^2-n)*(2n-1)
= (2*n^3+n^2+2*n^2+n) - (2*n^3-n^2-2*n^2+n)
= 2*n^3+3n^2+n - 2*n^3+3*n^2-n
= 6*n^2
当 n=1时, 1*2*3 - 0 = 6*1^2
当 n=2时, 2*3*5 - 1*2*3 = 6*2^2
当 n=3时, 3*4*7 - 2*3*5 = 6*3^2
...
当 n=n-1时,(n-1)*n*(2n-1) - (n-2)*(n-1)*(2n-3) = 6*(n-1)^2
当 n=n时, n*(n+1)*(2n+1) - (n-1)*n*(2n-1) = 6*n^2
上面的各个等式左右对应相加,左边的很多项会正负抵消,然后得到:
n*(n+1)*(2n+1) = 6*(1^2+2^2+3^2+...+n^2)
所以,(1^2+2^2+3^2+...+n^2) = n(n+1)(2n+1)/6
注:当完成题目后,对于某些题,官方网站会给出参考答案,在我的博客里不会将官方答案贴出来,仅仅会写下我自己当时的思路,除非两者不谋而合。另外,如果你有更好的思路,请留言告诉我,我非常乐意参与到讨论中来。