python 线程入门
线程的定义:
线程是操作系统能够进行运算调度的最小单位。它被包含在进程之中,是进程中的实际运作单位。一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行执行不同的任务。
进程和线程的区别
- Threads share the address space of the process that created it; processes have their own address space.
- 线程的地址空间共享,每个进程有自己的地址空间。
- Threads have direct access to the data segment of its process; processes have their own copy of the data segment of the parent process.
- 一个进程中的线程直接接入他的进程的数据段,但是每个进程都有他们自己的从父进程拷贝过来的数据段
- Threads can directly communicate with other threads of its process; processes must use interprocess communication to communicate with sibling processes.
- 一个进程内部的线程之间能够直接通信,进程之间必须使用进程间通信实现通信
- New threads are easily created; new processes require duplication of the parent process.
- 新的线程很容易被创建,新的进程需要从父进程复制
- Threads can exercise considerable control over threads of the same process; processes can only exercise control over child processes.
- 一个进程中的线程间能够有相当大的控制力度,进程仅仅只能控制他的子进程
- Changes to the main thread (cancellation, priority change, etc.) may affect the behavior of the other threads of the process; changes to the parent process does not affect child processes.
- 改变主线程(删除,优先级改变等)可能影响这个进程中的其他线程;修改父进程不会影响子进程
python线程模块的选择
Python提供了几个用于多线程编程的模块,包括thread、threading和Queue等。thread和threading模块允许程序员创建和管理线程。thread模块提供了基本的线程和锁的支持,threading提供了更高级别、功能更强的线程管理的功能。Queue模块允许用户创建一个可以用于多个线程之间共享数据的队列数据结构。
避免使用thread模块,因为更高级别的threading模块更为先进,对线程的支持更为完善,而且使用thread模块里的属性有可能会与threading出现冲突;其次低级别的thread模块的同步原语很少(实际上只有一个),而threading模块则有很多;再者,thread模块中当主线程结束时,所有的线程都会被强制结束掉,没有警告也不会有正常的清除工作,至少threading模块能确保重要的子线程退出后进程才退出。
thread模块不支持守护线程,当主线程退出时,所有的子线程不论它们是否还在工作,都会被强行退出。而threading模块支持守护线程,守护线程一般是一个等待客户请求的服务器,如果没有客户提出请求它就在那等着,如果设定一个线程为守护线程,就表示这个线程是不重要的,在进程退出的时候,不用等待这个线程退出。
threading模块
线程的两种调用方式
线程的调用有两种方式,分为直接调用和继承式调用,示例代码如下:
1 #直接调用 2 import threading 3 import time 4 5 def sayhi(num): #定义每个线程要运行的函数 6 7 print("running on number:%s" %num) 8 9 time.sleep(3) 10 11 if __name__ == '__main__': 12 13 t1 = threading.Thread(target=sayhi,args=(1,)) #生成一个线程实例 14 t2 = threading.Thread(target=sayhi,args=(2,)) #生成另一个线程实例 15 16 t1.start() #启动线程 17 t2.start() #启动另一个线程 18 19 print(t1.getName()) #获取线程名 20 print(t2.getName()) 21 22 #继承式调用 23 import threading 24 import time 25 26 27 class MyThread(threading.Thread): 28 def __init__(self,num): 29 threading.Thread.__init__(self) 30 self.num = num 31 32 def run(self):#定义每个线程要运行的函数 33 34 print("running on number:%s" %self.num) 35 36 time.sleep(3) 37 38 if __name__ == '__main__': 39 40 t1 = MyThread(1) 41 t2 = MyThread(2) 42 t1.start() 43 t2.start()
join和setDaemon
join()方法在该线程对象启动了之后调用线程的join()方法之后,那么主线程将会阻塞在当前位置直到子线程执行完成才继续往下走,如果所有子线程对象都调用了join()方法,那么主线程将会在等待所有子线程都执行完之后再往下执行。
setDaemon(True)方法在子线程对象调用start()方法(启动该线程)之前就调用的话,将会将该子线程设置成守护模式启动,这是什么意思呢?当子线程还在运行的时候,父线程已经执行完了,如果这个子线程设置是以守护模式启动的,那么随着主线程执行完成退出时,子线程立马也退出,如果没有设置守护启动子线程(也就是正常情况下)的话,主线程执行完成之后,进程会等待所有子线程执行完成之后才退出。
示例代码如下:
from threading import Thread import time def sayhi(name): time.sleep(2) print('%s say hello' %name) if __name__ == '__main__': t=Thread(target=sayhi,args=('egon',)) t.start() t.join() print('主线程') print(t.is_alive()) #查询线程状态
#1 主进程在其代码结束后就已经算运行完毕了(守护进程在此时就被回收),然后主进程会一直等非守护的子进程都运行完毕后回收子进程的资源(否则会产生僵尸进程),才会结束, #2 主线程在其他非守护线程运行完毕后才算运行完毕(守护线程在此时就被回收)。因为主线程的结束意味着进程的结束,进程整体的资源都将被回收,而进程必须保证非守护线程都运行完毕后才能结束。 from threading import Thread import time def sayhi(name): time.sleep(2) print('%s say hello' %name) #demo1 if __name__ == '__main__': t=Thread(target=sayhi,args=('egon',)) t.setDaemon(True) #必须在t.start()之前设置 t.start() print('主线程') print(t.is_alive()) ''' 主线程 True ''' #demo2 from threading import Thread import time def foo(): print(123) time.sleep(1) print("end123") def bar(): print(456) time.sleep(3) print("end456") t1=Thread(target=foo) t2=Thread(target=bar) t1.daemon=True t1.start() t2.start() print("main-------")
其他方法
Thread实例对象的方法 # isAlive(): 返回线程是否活动的。 # getName(): 返回线程名。 # setName(): 设置线程名。 threading模块提供的一些方法: # threading.currentThread(): 返回当前的线程变量。 # threading.enumerate(): 返回一个包含正在运行的线程的list。正在运行指线程启动后、结束前,不包括启动前和终止后的线程。 # threading.activeCount(): 返回正在运行的线程数量,与len(threading.enumerate())有相同的结果。
互斥锁
互斥锁的产生是因为前面提到过多线程之间是共享同一块内存地址的,也就是说多个不同的线程能够访问同一个变量中的数据,那么,当多个线程要修改这个变量,会产生什么情况呢?当多个线程修改同一个数据的时候,如果操作的时间够短的话,能得到我们想要的结果,但是,如果修改数据不是原子性的(这中间的时间太长)的话。。。很有可能造成数据的错误覆盖,从而得到我们不想要的结果。
这时候,就需要互斥锁出场了,为了让临界资源(会被多个线程同时访问)能够实现按照我们控制访问,需要使用互斥锁来锁住临界资源,当一个线程需要访问临界资源时先检查这个资源有没有被锁住,如果没有被锁住,那么访问这个资源并同时给这个资源加上锁,这样别
的线程就无法访问该临界资源了,直到这个线程访问完了这个临界资源之后,释放这把锁,其他线程才能够抢占该临界资源。这个,就是互斥锁的概念。
from threading import Thread,Lock import os,time def work(): global n lock.acquire() temp=n time.sleep(0.1) n=temp-1 lock.release() if __name__ == '__main__': lock=Lock() n=100 l=[] for i in range(100): p=Thread(target=work) l.append(p) p.start() for p in l: p.join() print(n)
#不加锁:并发执行,速度快,数据不安全 from threading import current_thread,Thread,Lock import os,time def task(): global n print('%s is running' %current_thread().getName()) temp=n time.sleep(0.5) n=temp-1 if __name__ == '__main__': n=100 lock=Lock() threads=[] start_time=time.time() for i in range(100): t=Thread(target=task) threads.append(t) t.start() for t in threads: t.join() stop_time=time.time() print('主:%s n:%s' %(stop_time-start_time,n)) ''' Thread-1 is running Thread-2 is running ...... Thread-100 is running 主:0.5216062068939209 n:99 ''' #不加锁:未加锁部分并发执行,加锁部分串行执行,速度慢,数据安全 from threading import current_thread,Thread,Lock import os,time def task(): #未加锁的代码并发运行 time.sleep(3) print('%s start to run' %current_thread().getName()) global n #加锁的代码串行运行 lock.acquire() temp=n time.sleep(0.5) n=temp-1 lock.release() if __name__ == '__main__': n=100 lock=Lock() threads=[] start_time=time.time() for i in range(100): t=Thread(target=task) threads.append(t) t.start() for t in threads: t.join() stop_time=time.time() print('主:%s n:%s' %(stop_time-start_time,n)) ''' Thread-1 is running Thread-2 is running ...... Thread-100 is running 主:53.294203758239746 n:0 ''' #有的同学可能有疑问:既然加锁会让运行变成串行,那么我在start之后立即使用join,就不用加锁了啊,也是串行的效果啊 #没错:在start之后立刻使用jion,肯定会将100个任务的执行变成串行,毫无疑问,最终n的结果也肯定是0,是安全的,但问题是 #start后立即join:任务内的所有代码都是串行执行的,而加锁,只是加锁的部分即修改共享数据的部分是串行的 #单从保证数据安全方面,二者都可以实现,但很明显是加锁的效率更高. from threading import current_thread,Thread,Lock import os,time def task(): time.sleep(3) print('%s start to run' %current_thread().getName()) global n temp=n time.sleep(0.5) n=temp-1 if __name__ == '__main__': n=100 lock=Lock() start_time=time.time() for i in range(100): t=Thread(target=task) t.start() t.join() stop_time=time.time() print('主:%s n:%s' %(stop_time-start_time,n)) ''' Thread-1 start to run Thread-2 start to run ...... Thread-100 start to run 主:350.6937336921692 n:0 #耗时是多么的恐怖 ''' )
线程死锁和递归锁
如果公共的临界资源比较多,并且线程间都使用互斥锁去访问临界资源,那么将有可能出现一个情况:
- 线程1拿到了资源A,接着需要资源B才能继续执行下去
- 线程2拿到了资源B,接着需要资源A才能继续执行下去
这样,线程1和线程2互不相让。。。结果就都卡死在这了,这就是线程死锁的由来。。。
所谓死锁: 是指两个或两个以上的进程或线程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程.
from threading import Lock as Lock import time mutexA=Lock() mutexA.acquire() mutexA.acquire() print(123) mutexA.release() mutexA.release()
import time from threading import Thread,Lock noodle_lock = Lock() fork_lock = Lock() def eat1(name): noodle_lock.acquire() print('%s 抢到了面条'%name) fork_lock.acquire() print('%s 抢到了叉子'%name) print('%s 吃面'%name) fork_lock.release() noodle_lock.release() def eat2(name): fork_lock.acquire() print('%s 抢到了叉子' % name) time.sleep(1) noodle_lock.acquire() print('%s 抢到了面条' % name) print('%s 吃面' % name) noodle_lock.release() fork_lock.release() for name in ['tom','jack','lucy']: t1 = Thread(target=eat1,args=(name,)) t2 = Thread(target=eat2,args=(name,)) t1.start() t2.start()
解决方法,递归锁,在Python中为了支持在同一线程中多次请求同一资源,python提供了可重入锁RLock。
python中提供了一个方法(不止python中,基本上所有的语言中都支持这个方法)那就是递归锁。递归锁的创建是使用threading.RLock(),它里面其实维护了两个东西,一个是Lock,另一个是counter,counter记录了加锁的次数,每加一把锁,counter就会+1,释放一次锁counter就会减一,直到所有加的锁都被释放掉了之后其他线程才能够访问这把锁获取资源。当然这个限制是对于线程之间的,同一个线程中,只要这个线程抢到了这把锁,那么这个线程就可以对这把锁加多个锁,而不会阻塞自己的执行。这就是递归锁的原理。
import time from threading import Thread,RLock fork_lock = noodle_lock = RLock() def eat1(name): noodle_lock.acquire() print('%s 抢到了面条'%name) fork_lock.acquire() print('%s 抢到了叉子'%name) print('%s 吃面'%name) fork_lock.release() noodle_lock.release() def eat2(name): fork_lock.acquire() print('%s 抢到了叉子' % name) time.sleep(1) noodle_lock.acquire() print('%s 抢到了面条' % name) print('%s 吃面' % name) noodle_lock.release() fork_lock.release() for name in ['马云','马化腾','马蓉']: t1 = Thread(target=eat1,args=(name,)) t2 = Thread(target=eat2,args=(name,)) t1.start() t2.start()
信号量
信号量用来控制线程并发数的,BoundedSemaphore或Semaphore管理一个内置的计数 器,每当调用acquire()时-1,调用release()时+1。
计数器不能小于0,当计数器为 0时,acquire()将阻塞线程至同步锁定状态,直到其他线程调用release()。(类似于停车位的概念)
BoundedSemaphore与Semaphore的唯一区别在于前者将在调用release()时检查计数 器的值是否超过了计数器的初始值,如果超过了将抛出一个异常。
from threading import Thread,Semaphore import threading import time # def func(): # if sm.acquire(): # print (threading.currentThread().getName() + ' get semaphore') # time.sleep(2) # sm.release() def func(): sm.acquire() print('%s get sm' %threading.current_thread().getName()) time.sleep(3) sm.release() if __name__ == '__main__': sm=Semaphore(5) for i in range(23): t=Thread(target=func) t.start()
事件
同进程的一样
线程的一个关键特性是每个线程都是独立运行且状态不可预测。如果程序中的其 他线程需要通过判断某个线程的状态来确定自己下一步的操作,这时线程同步问题就会变得非常棘手。为了解决这些问题,我们需要使用threading库中的Event对象。 对象包含一个可由线程设置的信号标志,它允许线程等待某些事件的发生。在 初始情况下,Event对象中的信号标志被设置为假。如果有线程等待一个Event对象, 而这个Event对象的标志为假,那么这个线程将会被一直阻塞直至该标志为真。一个线程如果将一个Event对象的信号标志设置为真,它将唤醒所有等待这个Event对象的线程。如果一个线程等待一个已经被设置为真的Event对象,那么它将忽略这个事件, 继续执行
event.isSet():返回event的状态值; event.wait():如果 event.isSet()==False将阻塞线程; event.set(): 设置event的状态值为True,所有阻塞池的线程激活进入就绪状态, 等待操作系统调度; event.clear():恢复event的状态值为False。
import threading import time,random from threading import Thread,Event def conn_mysql(): count=1 while not event.is_set(): if count > 3: raise TimeoutError('链接超时') print('<%s>第%s次尝试链接' % (threading.current_thread().getName(), count)) event.wait(0.5) count+=1 print('<%s>链接成功' %threading.current_thread().getName()) def check_mysql(): print('\033[45m[%s]正在检查mysql\033[0m' % threading.current_thread().getName()) time.sleep(random.randint(2,4)) event.set() if __name__ == '__main__': event=Event() conn1=Thread(target=conn_mysql) conn2=Thread(target=conn_mysql) check=Thread(target=check_mysql) conn1.start() conn2.start() check.start()
队列Queue
使用队列方法:
1 创建一个“队列”对象 2 import Queue 3 q = Queue.Queue(maxsize = 10) 4 Queue.Queue类即是一个队列的同步实现。队列长度可为无限或者有限。可通过Queue的构造函数的可选参数maxsize来设定队列长度。如果maxsize小于1就表示队列长度无限。 5 6 将一个值放入队列中 7 q.put(10) 8 调用队列对象的put()方法在队尾插入一个项目。put()有两个参数,第一个item为必需的,为插入项目的值;第二个block为可选参数,默认为 9 1。如果队列当前为空且block为1,put()方法就使调用线程暂停,直到空出一个数据单元。如果block为0,put方法将引发Full异常。 10 11 将一个值从队列中取出 12 q.get() 13 调用队列对象的get()方法从队头删除并返回一个项目。可选参数为block,默认为True。如果队列为空且block为True,get()就使调用线程暂停,直至有项目可用。如果队列为空且block为False,队列将引发Empty异常。 14 15 Python Queue模块有三种队列及构造函数: 16 1、Python Queue模块的FIFO队列先进先出。 class queue.Queue(maxsize) 17 2、LIFO类似于堆,即先进后出。 class queue.LifoQueue(maxsize) 18 3、还有一种是优先级队列级别越低越先出来。 class queue.PriorityQueue(maxsize) 19 20 此包中的常用方法(q = Queue.Queue()): 21 q.qsize() 返回队列的大小 22 q.empty() 如果队列为空,返回True,反之False 23 q.full() 如果队列满了,返回True,反之False 24 q.full 与 maxsize 大小对应 25 q.get([block[, timeout]]) 获取队列,timeout等待时间 26 q.get_nowait() 相当q.get(False) 27 非阻塞 q.put(item) 写入队列,timeout等待时间 28 q.put_nowait(item) 相当q.put(item, False) 29 q.task_done() 在完成一项工作之后,q.task_done() 函数向任务已经完成的队列发送一个信号 30 q.join() 实际上意味着等到队列为空,再执行别的操作
import queue q=queue.Queue() q.put('first') q.put('second') q.put('third') print(q.get()) print(q.get()) print(q.get()) ''' 结果(先进先出): first second third '''
import queue q=queue.LifoQueue() q.put('first') q.put('second') q.put('third') print(q.get()) print(q.get()) print(q.get()) ''' 结果(后进先出): third second first '''
import queue q=queue.PriorityQueue() #put进入一个元组,元组的第一个元素是优先级(通常是数字,也可以是非数字之间的比较),数字越小优先级越高 q.put((20,'a')) q.put((10,'b')) q.put((30,'c')) print(q.get()) print(q.get()) print(q.get()) ''' 结果(数字越小优先级越高,优先级高的优先出队): (10, 'b') (20, 'a') (30, 'c') '''