《PyTorch 深度学习实践 》-刘二大人 第十一讲

CNN用于图像识别

最后accuracy on test set:98%

  1 import torch
  2 import torch.nn as nn
  3 from torchvision import transforms
  4 from torchvision import datasets
  5 from torch.utils.data import DataLoader
  6 import torch.nn.functional as F
  7 import torch.optim as optim
  8 
  9 # prepare dataset
 10 batch_size = 64
 11 transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])  # 归一化,均值和方差
 12 
 13 train_dataset = datasets.MNIST(root='../dataset/mnist/', train=True, download=True, transform=transform)
 14 train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
 15 test_dataset = datasets.MNIST(root='../dataset/mnist/', train=False, download=True, transform=transform)
 16 test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
 17 
 18 
 19 # design model using class
 20 class InceptionA(nn.Module):
 21     def __init__(self, in_channels):
 22         super(InceptionA, self).__init__()
 23         self.branch1x1 = nn.Conv2d(in_channels, 16, kernel_size=1)
 24 
 25         self.branch5x5_1 = nn.Conv2d(in_channels, 16, kernel_size=1)
 26         self.branch5x5_2 = nn.Conv2d(16, 24, kernel_size=5, padding=2)
 27 
 28         self.branch3x3_1 = nn.Conv2d(in_channels, 16, kernel_size=1)
 29         self.branch3x3_2 = nn.Conv2d(16, 24, kernel_size=3, padding=1)
 30         self.branch3x3_3 = nn.Conv2d(24, 24, kernel_size=3, padding=1)
 31 
 32         self.branch_pool = nn.Conv2d(in_channels, 24, kernel_size=1)
 33 
 34     def forward(self, x):
 35         branch1x1 = self.branch1x1(x)
 36 
 37         branch5x5 = self.branch5x5_1(x)
 38         branch5x5 = self.branch5x5_2(branch5x5)
 39 
 40         branch3x3 = self.branch3x3_1(x)
 41         branch3x3 = self.branch3x3_2(branch3x3)
 42         branch3x3 = self.branch3x3_3(branch3x3)
 43 
 44         branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
 45         branch_pool = self.branch_pool(branch_pool)
 46 
 47         outputs = [branch1x1, branch5x5, branch3x3, branch_pool]
 48         return torch.cat(outputs, dim=1)  # b,c,w,h  c对应的是dim=1
 49 
 50 
 51 class Net(nn.Module):
 52     def __init__(self):
 53         super(Net, self).__init__()
 54         self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
 55         self.conv2 = nn.Conv2d(88, 20, kernel_size=5)  # 88 = 24x3 + 16
 56 
 57         self.incep1 = InceptionA(in_channels=10)  # 与conv1 中的10对应
 58         self.incep2 = InceptionA(in_channels=20)  # 与conv2 中的20对应
 59 
 60         self.mp = nn.MaxPool2d(2)
 61         self.fc = nn.Linear(1408, 10)
 62 
 63     def forward(self, x):
 64         in_size = x.size(0)
 65         x = F.relu(self.mp(self.conv1(x)))
 66         x = self.incep1(x)
 67         x = F.relu(self.mp(self.conv2(x)))
 68         x = self.incep2(x)
 69         x = x.view(in_size, -1)
 70         x = self.fc(x)
 71 
 72         return x
 73 model = Net()
 74 #使用GPU
 75 device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 76 model.to(device)
 77 
 78 # construct loss and optimizer
 79 criterion = torch.nn.CrossEntropyLoss()
 80 optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
 81 
 82 
 83 # training cycle forward, backward, update
 84 def train(epoch):
 85     running_loss = 0.0
 86     for batch_idx, data in enumerate(train_loader, 0):
 87         inputs, target = data
 88         inputs, target = inputs.to(device), target.to(device)
 89         optimizer.zero_grad()
 90 
 91         outputs = model(inputs)
 92         loss = criterion(outputs, target)
 93         loss.backward()
 94         optimizer.step()
 95 
 96         running_loss += loss.item()
 97         if batch_idx % 300 == 299:
 98             print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
 99             running_loss = 0.0
100 
101 
102 def hehe():
103     correct = 0
104     total = 0
105     with torch.no_grad():
106         for data in test_loader:
107             images, labels = data
108             images, labels = images.to(device), labels.to(device)
109             outputs = model(images)
110             _, predicted = torch.max(outputs.data, dim=1)
111             total += labels.size(0)
112             correct += (predicted == labels).sum().item()
113     print('accuracy on test set: %d %% ' % (100 * correct / total))
114 
115 
116 if __name__ == '__main__':
117     for epoch in range(10):
118         train(epoch)
119         hehe()

加入Residual,解决梯度消失的问题,即在网络里面加入了跳连接,H(x) = F(x) + x,张量维度必须一样,加完后再激活。

(Residual是华人何凯明和他的团队提出来的,简直就是华人之光啊~)

最后accuracy on test set:99%

  1 import torch
  2 import torch.nn as nn
  3 from torchvision import transforms
  4 from torchvision import datasets
  5 from torch.utils.data import DataLoader
  6 import torch.nn.functional as F
  7 import torch.optim as optim
  8 
  9 # prepare dataset
 10 batch_size = 64
 11 #ToTensor()将shape为(H, W, C)的nump.ndarray或img转为shape为(C, H, W)的tensor
 12 # transforms.Normalize()将每一个数值归一化到[0,1],0.1307,0.3081是MNIST数据集的均值和方差
 13 transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])  # 归一化,均值和方差
 14 
 15 train_dataset = datasets.MNIST(root='../dataset/mnist/', train=True, download=True, transform=transform)
 16 train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
 17 test_dataset = datasets.MNIST(root='../dataset/mnist/', train=False, download=True, transform=transform)
 18 test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
 19 
 20 
 21 # design model using class
 22 class ResidualBlock(nn.Module):
 23     def __init__(self, channels):
 24         super(ResidualBlock, self).__init__()
 25         self.channels = channels
 26         self.conv1 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
 27         self.conv2 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
 28 
 29     def forward(self, x):
 30         y = F.relu(self.conv1(x))
 31         y = self.conv2(y)
 32         return F.relu(x + y)
 33 
 34 
 35 class Net(nn.Module):
 36     def __init__(self):
 37         super(Net, self).__init__()
 38         self.conv1 = nn.Conv2d(1, 16, kernel_size=5)
 39         self.conv2 = nn.Conv2d(16, 32, kernel_size=5)  # 88 = 24x3 + 16
 40 
 41         self.rblock1 = ResidualBlock(16)
 42         self.rblock2 = ResidualBlock(32)
 43 
 44         self.mp = nn.MaxPool2d(2)
 45         self.fc = nn.Linear(512, 10)  # 暂时不知道1408咋能自动出来的
 46 
 47     def forward(self, x):
 48         in_size = x.size(0)
 49 
 50         x = self.mp(F.relu(self.conv1(x)))
 51         x = self.rblock1(x)
 52         x = self.mp(F.relu(self.conv2(x)))
 53         x = self.rblock2(x)
 54 
 55         x = x.view(in_size, -1)
 56         x = self.fc(x)
 57         return x
 58 
 59 
 60 model = Net()
 61 #使用GPU
 62 device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 63 model.to(device)
 64 
 65 # construct loss and optimizer
 66 criterion = torch.nn.CrossEntropyLoss()
 67 optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
 68 
 69 
 70 # training cycle forward, backward, update
 71 def train(epoch):
 72     running_loss = 0.0
 73     for batch_idx, data in enumerate(train_loader, 0):
 74         inputs, target = data
 75         inputs, target = inputs.to(device), target.to(device)
 76         optimizer.zero_grad()
 77 
 78         outputs = model(inputs)
 79         loss = criterion(outputs, target)
 80         loss.backward()
 81         optimizer.step()
 82 
 83         running_loss += loss.item()
 84         if batch_idx % 300 == 299:
 85             print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
 86             running_loss = 0.0
 87 
 88 
 89 def hehe():
 90     correct = 0
 91     total = 0
 92     with torch.no_grad():
 93         for data in test_loader:
 94             images, labels = data
 95             images, labels = images.to(device), labels.to(device)
 96             outputs = model(images)
 97             _, predicted = torch.max(outputs.data, dim=1)
 98             total += labels.size(0)
 99             correct += (predicted == labels).sum().item()
100     print('accuracy on test set: %d %% ' % (100 * correct / total))
101 
102 
103 if __name__ == '__main__':
104     for epoch in range(10):
105         train(epoch)
106         hehe()

accuracy on test set: 98 %
[9, 300] loss: 0.025
[9, 600] loss: 0.025
[9, 900] loss: 0.022
accuracy on test set: 98 %
[10, 300] loss: 0.021
[10, 600] loss: 0.021
[10, 900] loss: 0.023
accuracy on test set: 99 %

posted @ 2022-10-23 22:58  silvan_happy  阅读(77)  评论(0编辑  收藏  举报