numpy sum axis详解
axis
先看懂numpy.argmax的含义.那么numpy.sum就非常好理解.
看一维的例子.
import numpy as np
a = np.array([1, 5, 5, 2])
print(np.sum(a, axis=0))
上面代码就是把各个值加相加.默认axis为0.axis在二维以上数组中才能体现出来作用.
import numpy as np
a = np.array([[1, 5, 5, 2],
[9, 6, 2, 8],
[3, 7, 9, 1]])
print(np.sum(a, axis=0))
为了描述方便,a就表示这个二维数组,np.sum(a, axis=0)的含义是a[0][j],a[1][j],a[2]j对应项相加的结果.即[1,5,5,2]+[9,6,2,8]+[3,7,9,1]=[13,18,16,11].接着看axis=1的情况.
import numpy as np
a = np.array([[1, 5, 5, 2],
[9, 6, 2, 8],
[3, 7, 9, 1]])
print(np.sum(a, axis=1))
np.sum(a, axis=1)的含义是a[i][0],a[i][1],a[i][2],a[i]3对应项相加的结果.即[1,9,3]+[5,6,7]+[5,2,9]+[2,8,1]=[13,25,20].
三维情况是类似的.
import numpy as np
a = np.array([
[
[1, 5, 5, 2],
[9, -6, 2, 8],
[-3, 7, -9, 1]
],
[
[-1, 5, -5, 2],
[9, 6, 2, 8],
[3, 7, 9, 1]
]
])
print(np.sum(a, axis=0))
np.sum(a, axis=0)的含义是a[0][j][k],a[1][j][k] (j=0,1,2,k=0,1,2,3)中对应项相加的结果.[[1, 5, 5, 2],[9, -6, 2, 8],[-3, 7, -9, 1]]+[[-1, 5, -5, 2],[9, 6, 2, 8],[3, 7, 9, 1]]=[[0,10,0,4],[18,0,4,16],[0,14,0,2]]. axis=1,axis=2的道理是类似的.
keepdims
keepdims的含义是是否保持维数,默认是false.通过上面的例子可以发现sum之后3维变成2维.2维变成1维.keepdims=True,最直观的理解就是把sum结果又加一个[],以保持它的维度不变.这在某些场景有非常有用.
import numpy as np
a = np.array([
[
[1, 5, 5, 2],
[9, -6, 2, 8],
[-3, 7, -9, 1]
],
[
[-1, 5, -5, 2],
[9, 6, 2, 8],
[3, 7, 9, 1]
]
])
print(np.sum(a, axis=0, keepdims=True))
可以和上面的例子对比下结果.
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· 单线程的Redis速度为什么快?