ARTS-S pytorch中backward函数的gradient参数作用
导数偏导数的数学定义
参考资料1和2中对导数偏导数的定义都非常明确.导数和偏导数都是函数对自变量而言.从数学定义上讲,求导或者求偏导只有函数对自变量,其余任何情况都是错的.但是很多机器学习的资料和开源库都涉及到标量对向量求导.比如下面这个pytorch的例子.
import torch
x = torch.tensor([1.0, 2.0, 3.0], requires_grad=True)
y = x ** 2 + 2
z = torch.sum(y)
z.backward()
print(x.grad)
简单解释下,设,则
则
将,,代入就可以得到
结果是和pytorch的输出是一样的.反过来想想,其实所谓的"标量对向量求导"本质上是函数对各个自变量求导,这里只是把各个自变量看成一个向量.和数学上的定义并不矛盾.
backward的gradient参数作用
现在有如下问题,已知
其中函数的具体定义未知,现在求
根据参考资料2中讲的多元复合函数的求导法则.
上面3个等式可以写成矩阵相乘的形式.如下
其中
叫作雅可比(Jacobian)式.雅可比式可以根据已知条件求出.现在只要知道的值,哪怕不知道的具体形式也能求出来. 那现在的现在的问题是:
怎么样才能求出
答案是由pytorch的backward函数的gradient参数提供.这就是gradient参数的作用. 参数gradient能解决什么问题,有什么实际的作用呢?说实话,因为我才接触到pytorch,还真没有见过现实中怎么用gradient参数.但是目前可以通过数学意义来理解,就是可以忽略复合函数某个位置之前的所有函数 的具体形式,直接给定一个梯度来求得对各个自变量的偏导.
上面各个方程用代码表示如下所示:
# coding utf-8
import torch
x1 = torch.tensor(1, requires_grad=True, dtype=torch.float)
x2 = torch.tensor(2, requires_grad=True, dtype=torch.float)
x3 = torch.tensor(3, requires_grad=True, dtype=torch.float)
y = torch.randn(3)
y[0] = x1 * x2 * x3
y[1] = x1 + x2 + x3
y[2] = x1 + x2 * x3
x = torch.tensor([x1, x2, x3])
y.backward(torch.tensor([0.1, 0.2, 0.3], dtype=torch.float))
print(x1.grad)
print(x2.grad)
print(x3.grad)
按照上用的推导方法
和代码的运行结果是一样的.
参考资料
- 同济大学数学系,高等数学第七版上册,高等教育出版社,p75-76, 2015.
- 同济大学数学系,高等数学第七版下册,高等教育出版社,p78-80,p88-91, 2015.
- Calculus,Thirteenth Edition,p822, 2013.
- 详解Pytorch 自动微分里的(vector-Jacobian product)
- PyTorch 的 backward 为什么有一个 grad_variables 参数?)
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· 单线程的Redis速度为什么快?