使用BERT模型生成token级向量
本文默认读者有一定的Transformer基础,如果没有,请先稍作学习Transormer以及BERT。
相信网上有很多方法可以生成BERT向量,最有代表性的一个就是bert as service,用几行代码就可以生成向量,但是这样生成的是句向量,也就是说,正确的做法是输入一句句子:
我是一个中国人,我热爱着中国的每一个城市。
输出的是这句句子的向量,一个768维的向量(google预训练是这么做的),这个向量是具有上下文信息的,详细参考Transformer结构。但是网上有一些做法是用bert as service来生成词级向量,例如输入[‘我’,‘是’,‘一个’, ‘中国’, ‘人’],得到5个768维的向量,用来作为词向量,但这样做是错误的!具体原因参照我前面的描述,既然思想是错误的,也就不奇怪效果不好了,所以在这种情况下,请先别着急说BERT预训练模型不work。
BERT生成token级别的向量,这两篇文章理解的比较准确(我的代码有一部分参考第二篇博客):
https://blog.csdn.net/u012526436/article/details/87697242
https://blog.csdn.net/shine19930820/article/details/85730536
为什么说是token级别的向量呢?因为Transformer结构所决定其输入和输出的长度相等的,而且对于中文预训练模型,做法是将中文拆成一个个的字来做学习的,因此每一个token就是一个字。对于一句话,我们会在其头上加[cls]在尾部加[SEP],并且BERT是一个多任务的预训练过程,现在假设text_a是我们需要获取向量的句子,text_b为空,那么,输入:
我是一个中国人,我热爱着中国的每一个城市。
处理后:
[CLS]我是一个中国人,我热爱着中国的每一个城市。[SEP]
通常我们会用第一个字符[CLS]的输出向量(768维)作为整个句子的向量表示,用来接全连接、softmax层做分类,现在我打算获取这样一个句子中每一个字符的向量表示,并存储下来,以备下游任务,如果我只用[CLS]的向量来做分类,那么就只取第一个向量,如果用所有token的向量来做卷积,那么就舍弃一头一尾的向量,取中间的向量来做卷积,这样下游任务不用改太多代码,把这样的信息存储在文件里,下游任务用起来比较灵活。
存储ndarray
要能够把词向量存储下来供下次使用,就肯定要知道怎么存储ndarray,因为拿到的词向量是shape为(N, seq_len, 768)的ndarray,N代表有多少个句子,seq_len代表句子的长度(加上头尾),768即向量的维度。这里我使用h5py存储ndarray,当然也有一些别的方法。
import h5py # shape a: (3, 4, 5) a = np.array([[[1,0.5,1,0.3,-1],[1,0.5,1,0.3,-1],[1,0.5,1,0.3,-1],[1,0.5,1,0.3,-1]], [[1,0.5,1,0.3,-1],[1,0.5,1,0.3,-1],[1,0.5,1,0.3,-1],[1,0.5,1,0.3,-1]], [[1,0.5,1,0.3,-1],[1,0.5,1,0.3,-1],[1,0.5,1,0.3,-1],[1,0.5,1,0.3,-1]]]) print(a.shape) save_file = h5py.File('../downstream/input_c_emb.h5', 'w') save_file.create_dataset('train', data=a) save_file.close() open_file = h5py.File('../downstream/input_c_emb.h5', 'r') data = open_file['train'][:] open_file.close() print(data) print(type(data)) print(data.shape)
字符级Token
因为我希望对中文字符进行一个字符一个字符的提取,而不是会把非中文字符拼在一起(这是google的逻辑),比如说”我出生于1996年“这句话,我希望提取为‘我’,‘出’,‘生’,‘于’,‘1’,‘9’,‘9’,‘6’,‘年’,因此需要自己写一个token类,在bert项目中tokenization.py文件中。
class CharTokenizer(object): """Runs end-to-end tokenziation.""" def __init__(self, vocab_file, do_lower_case=True): self.vocab = load_vocab(vocab_file) self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case) self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab) def tokenize(self, text): split_tokens = [] for token in self.basic_tokenizer.tokenize(text): for sub_token in token: # 有的字符在预训练词典里没有 # 这部分字符替换成[UNK]符号 if not sub_token in self.vocab: split_tokens.append('[UNK]') else: split_tokens.append(sub_token) return split_tokens def convert_tokens_to_ids(self, tokens): return convert_tokens_to_ids(self.vocab, tokens)
提取向量作为特征
这里对于输入输出稍作解释,我的输入有三个文件,train.txt,val.txt,test.txt,顾名思义了。每个文件中的一系列的句子,比如train.txt中有5000多行,代表5000多个句子,每一个句子是已经以空格分开的序列,比如”我 爱 中 国“。输出就是一个input_c_emb.h5,里面保存了所有的嵌入向量,以train,val,test标识为分隔。
代码注释还行,就不详细说了。
这段代码在项目中是token_features.py,项目地址后面会放。
# 获取token features,即每一个字符的向量,可以用cls作为句子向量,也可以用每一个字符的向量 import os import sys curPath = os.path.abspath(os.path.dirname(__file__)) rootPath = os.path.split(curPath)[0] sys.path.append(rootPath) print(sys.path) import tensorflow as tf import tokenization import modeling import numpy as np import h5py # 配置文件 # data_root是模型文件,可以用预训练的,也可以用在分类任务上微调过的模型 data_root = '../chinese_wwm_ext_L-12_H-768_A-12/' bert_config_file = data_root + 'bert_config.json' bert_config = modeling.BertConfig.from_json_file(bert_config_file) init_checkpoint = data_root + 'bert_model.ckpt' bert_vocab_file = data_root + 'vocab.txt' # 经过处理的输入文件路径 file_input_x_c_train = '../data/legal_domain/train_x_c.txt' file_input_x_c_val = '../data/legal_domain/val_x_c.txt' file_input_x_c_test = '../data/legal_domain/test_x_c.txt' # embedding存放路径 emb_file_dir = '../data/legal_domain/emb.h5' # graph input_ids = tf.placeholder(tf.int32, shape=[None, None], name='input_ids') input_mask = tf.placeholder(tf.int32, shape=[None, None], name='input_masks') segment_ids = tf.placeholder(tf.int32, shape=[None, None], name='segment_ids') BATCH_SIZE = 16 SEQ_LEN = 510 def batch_iter(x, batch_size=64, shuffle=False): """生成批次数据,一个batch一个batch地产生句子向量""" data_len = len(x) num_batch = int((data_len - 1) / batch_size) + 1 if shuffle: indices = np.random.permutation(np.arange(data_len)) x_shuffle = np.array(x)[indices] else: x_shuffle = x[:] word_mask = [[1] * (SEQ_LEN + 2) for i in range(data_len)] word_segment_ids = [[0] * (SEQ_LEN + 2) for i in range(data_len)] for i in range(num_batch): start_id = i * batch_size end_id = min((i + 1) * batch_size, data_len) yield x_shuffle[start_id:end_id], word_mask[start_id:end_id], word_segment_ids[start_id:end_id] def read_input(file_dir): # 从文件中读到所有需要转化的句子 # 这里需要做统一长度为510 # input_list = [] with open(file_dir, 'r', encoding='utf-8') as f: input_list = f.readlines() # input_list是输入list,每一个元素是一个str,代表输入文本 # 现在需要转化成id_list word_id_list = [] for query in input_list: split_tokens = token.tokenize(query) if len(split_tokens) > SEQ_LEN: split_tokens = split_tokens[:SEQ_LEN] else: while len(split_tokens) < SEQ_LEN: split_tokens.append('[PAD]') # **************************************************** # 如果是需要用到句向量,需要用这个方法 # 加个CLS头,加个SEP尾 tokens = [] tokens.append("[CLS]") for i_token in split_tokens: tokens.append(i_token) tokens.append("[SEP]") # **************************************************** word_ids = token.convert_tokens_to_ids(tokens) word_id_list.append(word_ids) return word_id_list # 初始化BERT model = modeling.BertModel( config=bert_config, is_training=False, input_ids=input_ids, input_mask=input_mask, token_type_ids=segment_ids, use_one_hot_embeddings=False ) # 加载BERT模型 tvars = tf.trainable_variables() (assignment, initialized_variable_names) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint) tf.train.init_from_checkpoint(init_checkpoint, assignment) # 获取最后一层和倒数第二层 encoder_last_layer = model.get_sequence_output() encoder_last2_layer = model.all_encoder_layers[-2] # 读取数据 token = tokenization.CharTokenizer(vocab_file=bert_vocab_file) input_train_data = read_input(file_dir='../data/legal_domain/train_x_c.txt') input_val_data = read_input(file_dir='../data/legal_domain/val_x_c.txt') input_test_data = read_input(file_dir='../data/legal_domain/test_x_c.txt') with tf.Session() as sess: sess.run(tf.global_variables_initializer()) save_file = h5py.File('../downstream/input_c_emb.h5', 'w') emb_train = [] train_batches = batch_iter(input_train_data, batch_size=BATCH_SIZE, shuffle=False) for word_id, mask, segment in train_batches: feed_data = {input_ids: word_id, input_mask: mask, segment_ids: segment} last2 = sess.run(encoder_last2_layer, feed_dict=feed_data) # print(last2.shape) for sub_array in last2: emb_train.append(sub_array) # 可以保存了 emb_train_array = np.asarray(emb_train) save_file.create_dataset('train', data=emb_train_array) # val emb_val = [] val_batches = batch_iter(input_val_data, batch_size=BATCH_SIZE, shuffle=False) for word_id, mask, segment in val_batches: feed_data = {input_ids: word_id, input_mask: mask, segment_ids: segment} last2 = sess.run(encoder_last2_layer, feed_dict=feed_data) # print(last2.shape) for sub_array in last2: emb_val.append(sub_array) # 可以保存了 emb_val_array = np.asarray(emb_val) save_file.create_dataset('val', data=emb_val_array) # test emb_test = [] test_batches = batch_iter(input_test_data, batch_size=BATCH_SIZE, shuffle=False) for word_id, mask, segment in test_batches: feed_data = {input_ids: word_id, input_mask: mask, segment_ids: segment} last2 = sess.run(encoder_last2_layer, feed_dict=feed_data) # print(last2.shape) for sub_array in last2: emb_test.append(sub_array) # 可以保存了 emb_test_array = np.asarray(emb_test) save_file.create_dataset('test', data=emb_test_array) save_file.close() print(emb_train_array.shape) print(emb_val_array.shape) print(emb_test_array.shape) # 这边目标是接下游CNN任务,因此先写入所有token的embedding,768维 # 写入shape直接是(N, max_seq_len + 2, 768) # 下游需要选用的时候,如果卷积,则去掉头尾使用,如果全连接,则直接使用头部 # 这里直接设定max_seq_len=510,加上[cls]和[sep],得到512 # 写入(n, 512, 768) ndarray到文件,需要用的时候再读出来,就直接舍弃embedding层
项目地址