问题规约---漫谈人工智能

问题规约(Problem reduction): 是另一种基于状态空间的问题描述与求解方法。已知问题的描述,通过一系列变换把此问题最终变成另一个本原问题(事实,定理)集合;这些本原问题的解可以直接得到,从而解决了初始问题。

问题规约表示可以由下列三部分组成: 
(1)一个初始问题描述; 
(2)一套把问题变换为子问题的操作符; 
(3)一套本原问题描述。

先把问题分解为子问题和子-子问题,然后解决较小的问题。对该问题的某个具体子集的解答就意味着对原始问题的一个解答。问题归约表示的组成部分:一个初始问题描述;一套把问题变换为子问题的操作符;一套本原问题描述。问题归约的实质:从目标(要解决的问题)出发逆向推理,建立子问题以及子问题的子问题,直至最后把初始问题归约为一个平凡的本原问题集合。

变换可区分为以下三种情况: (1)状态变迁:导致问题从上一状态变迁到下一状态,这就是一般图搜索技术中操作算子的作用。 (2)问题分解:分解问题为需同时处理的子问题,但不改变问题状态。 (3)基于状态变迁的问题分解:先导致状态变迁,再实现问题分解,实际上就是前两个操作的联合执行。


例如:

梵塔难题:

  有3个柱子(1,2和3)和3个不同尺寸的圆盘(A,B和C)。在每个圆盘的中心有一个孔,所以圆盘可以堆叠在柱子上。最初,3个圆盘都堆在柱子1上:最大的圆盘C在底部,最小的圆盘A在顶部。要求把所有圆盘都移到柱子3上,每次只许移动一个,而且只能先搬动柱子顶部的圆盘,还不许把尺寸较大的圆盘堆放在尺寸较小的圆盘上。

 

解题过程:

  将原始问题归约为一个较简单问题集合,要把所有圆盘都移至柱子3,我们必须首先把圆盘C移至柱子3;而且在移动圆盘C至柱子3之前,要求柱子3必须是空的。只有在移开圆盘A和B之后,才能移动圆盘C;而且圆盘A和B最好不要移至柱子3就不能把圆盘C移至柱子3。因此,首先应该把圆盘A和B移到柱子2上。然后才能够进行关键的一步,把圆盘C从柱子1移至柱子3,并继续解决难题的其余部分。
  梵塔问题归约图:子问题2可作为本原问题考虑,因为它的解只包含一步移动(最原始的状态)。应用一系列相似的推理,子问题1和子问题3也可被归约为本原问题。

 

  

 

posted @ 2019-03-06 10:51  zhouwenfan  阅读(902)  评论(0编辑  收藏  举报