[BZOJ4802]欧拉函数
description
给出\(n\),求\(\varphi(n)\)。\(n\le10^{18}\)
sol
\(Pollard\ Rho\),存个代码。
code
#include<cstdio>
#include<algorithm>
#include<ctime>
using namespace std;
#define ll long long
ll p[100],len;
ll mul(ll x,ll y,ll mod){
x%=mod;y%=mod;ll res=0;
while(y){if(y&1)res=(res+x)%mod;x=(x+x)%mod;y>>=1;}
return res;
}
ll fastpow(ll x,ll y,ll mod){
x%=mod;ll res=1;
while(y){if(y&1)res=mul(res,x,mod);x=mul(x,x,mod);y>>=1;}
return res;
}
bool MR(ll n){
if (n==2) return true;
for (int i=1;i<=10;++i){
ll x=1ll*rand()*rand()%(n-2)+2,p=n-1;
if (fastpow(x,p,n)!=1) return false;
while (~p&1){
p>>=1;ll y=fastpow(x,p,n);
if (mul(y,y,n)==1&&y!=1&&y!=n-1) return false;
}
}
return true;
}
ll PR(ll n,ll c){
ll i=0,k=2,x,y;x=y=1ll*rand()*rand()%(n-1)+1;
while (1){
x=(mul(x,x,n)+c)%n;
ll d=__gcd((y-x+n)%n,n);
if (d!=1&&d!=n) return d;
if (x==y) return n;
if (++i==k) y=x,k<<=1;
}
}
void fact(ll n,ll c){
if (n==1) return;
if (MR(n)) {p[++len]=n;return;}
ll p=n,k=c;
while (p>=n) p=PR(p,c--);
fact(p,k);fact(n/p,k);
}
int main(){
ll n;scanf("%lld",&n);fact(n,666);
sort(p+1,p+len+1);len=unique(p+1,p+len+1)-p-1;
ll res=n;
for (int i=1;i<=len;++i) res=res/p[i]*(p[i]-1);
printf("%lld\n",res);
return 0;
}