[BZOJ3218]a + b Problem

bzoj

description


sol

最小鸽建图。
假设\(S\)集合是染黑色,\(T\)集合是染白色。
那么从\(S\)\(i\)\(b_i\)边,从\(i\)\(T\)\(w_i\)边。
每个点\(i\)多拆出一个点\(i'\),从\(i\)\(i'\)\(p_i\)边。对于所有满足\(1\le j<i\)\(l_i\le a_j\le r_i\)\(j\),从\(i'\)\(j\)\(inf\)边。
然后跑最小鸽就好了。

然鹅。这样建图的边数是\(O(n^2)\)级别的。
所以肯定是过不去的。
考虑优化。
发现条件其实是一个二位偏序的形式,所以可以用主席树优化建边。
具体来说,以\(a\)值作为主席树下标,每个\(i'\)向主席树上的\(\log n\)个区间连边,每个区间向其中包含的所有\(i\)连边,容量都是\(inf\)
这样点数和边数都是\(O(n\log n)\)级别的,就可以通过本题了。

code

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
int gi(){
	int x=0,w=1;char ch=getchar();
	while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
	if (ch=='-') w=0,ch=getchar();
	while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
	return w?x:-x;
}
const int N = 5e5+5;
const int inf = 1e9;
struct president_tree{int ls,rs;}t[N<<2];
struct edge{int to,nxt,w;}a[N];
int n,A[N],l[N],r[N],o[N],len,S,T,tot,head[N],cnt=1,dep[N],cur[N],rt,goal,ans;
queue<int>Q;
void link(int u,int v,int w){
	a[++cnt]=(edge){v,head[u],w};head[u]=cnt;
	a[++cnt]=(edge){u,head[v],0};head[v]=cnt;
}
bool bfs(){
	memset(dep,0,sizeof(dep));
	dep[S]=1;Q.push(S);
	while (!Q.empty()){
		int u=Q.front();Q.pop();
		for (int e=head[u];e;e=a[e].nxt)
			if (a[e].w&&!dep[a[e].to])
				dep[a[e].to]=dep[u]+1,Q.push(a[e].to);
	}
	return dep[T];
}
int dfs(int u,int f){
	if (u==T) return f;
	for (int &e=cur[u];e;e=a[e].nxt)
		if (a[e].w&&dep[a[e].to]==dep[u]+1){
			int tmp=dfs(a[e].to,min(a[e].w,f));
			if (tmp) {a[e].w-=tmp;a[e^1].w+=tmp;return tmp;}
		}
	return 0;
}
int dinic(){
	int res=0;
	while (bfs()){
		for (int i=1;i<=tot;++i) cur[i]=head[i];
		while (int tmp=dfs(S,inf)) res+=tmp;
	}
	return res;
}
void query(int x,int l,int r,int ql,int qr){
	if (l>=ql&&r<=qr) {link(goal,x,inf);return;}
	int mid=l+r>>1;
	if (ql<=mid) query(t[x].ls,l,mid,ql,qr);
	if (qr>mid) query(t[x].rs,mid+1,r,ql,qr);
}
void modify(int &x,int l,int r,int p){
	t[++tot]=t[x];link(tot,x,inf);x=tot;
	link(x,goal,inf);
	if (l==r) return;int mid=l+r>>1;
	if (p<=mid) modify(t[x].ls,l,mid,p);else modify(t[x].rs,mid+1,r,p);
}
int main(){
	n=gi();S=2*n+1;T=tot=2*n+2;
	for (int i=1,b,w,p;i<=n;++i){
		A[i]=gi(),b=gi(),w=gi(),ans+=b+w;
		l[i]=gi(),r[i]=gi(),p=gi();
		link(S,i,b),link(i,T,w);
		link(i,i+n,p);
		o[++len]=A[i];o[++len]=l[i];o[++len]=r[i];
	}
	sort(o+1,o+len+1);len=unique(o+1,o+len+1)-o-1;
	for (int i=1;i<=n;++i){
		A[i]=lower_bound(o+1,o+len+1,A[i])-o;
		l[i]=lower_bound(o+1,o+len+1,l[i])-o;
		r[i]=lower_bound(o+1,o+len+1,r[i])-o;
		goal=n+i,query(rt,1,len,l[i],r[i]);
		goal=i,modify(rt,1,len,A[i]);
	}
	printf("%d\n",ans-dinic());
	return 0;
}
posted @ 2018-06-05 14:17  租酥雨  阅读(607)  评论(0编辑  收藏  举报