[Aizu2784]Similarity of Subtrees
Description
给一棵\(n\)个节点的有根树,定义两棵树同构当且仅当他们每个深度的节点个数相同。问这个树上有多少对子树满足同构。\(n\le100000\)。
sol
树\(hash\)。
每个深度的节点个数,类似于一个多项式?所以定义\(hash\)函数:
\[Hash(u)=base1+base2\sum Hash(v)
\]
最后判相等就不说了,\(sort\)一遍再搞一搞就好了。
code
在我交换\(base1\)和\(base2\)的值之前它是\(WA\)的。。。
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int gi(){
int x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if (ch=='-') w=0,ch=getchar();
while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return w?x:-x;
}
#define ull unsigned long long
const int N = 2e5+5;
const ull base2 = 20020415;
const ull base1 = 20011118;
int n,to[N],nxt[N],head[N],cnt;
ull Hash[N],ans;
void link(int u,int v){
to[++cnt]=v;nxt[cnt]=head[u];head[u]=cnt;
}
void dfs(int u,int f){
Hash[u]=base1;
for (int e=head[u];e;e=nxt[e])
if (to[e]!=f) dfs(to[e],u),Hash[u]+=Hash[to[e]]*base2;
}
int main(){
n=gi();
for (int i=1;i<n;++i){
int u=gi(),v=gi();
link(u,v);link(v,u);
}
dfs(1,0);sort(Hash+1,Hash+n+1);
for (int i=1,j;i<=n;i=j){
j=i+1;
while (j<=n&&Hash[j]==Hash[i]) ++j;
ans+=1ll*(j-i)*(j-i-1)/2;
}
printf("%llu\n",ans);return 0;
}