[BZOJ3529][SDOI2014]数表

BZOJ
Luogu
题意:给定n,m,a,求

\[\sum_{i=1}^{n}\sum_{j=1}^{m}[\sigma(\gcd(i,j))\le{a}]\sigma(\gcd(i,j)) \]

多组数据,\(n,m\le10^5\)

sol

首先\(\sigma(i)\)是个积性函数,在积性函数与线性筛中提到了筛的方法,可供参考。
多组数据不好处理,但好在可以离线。把所有询问按照\(a\)排序,再把1-N所有数按照\(\sigma(i)\)排序,再依次加入。
为了动态维护前缀和就需要写树状数组。
考虑到每个数只会被加入一次,被加入在\(\lfloor\frac Ni\rfloor\)个位置,所以加入的复杂度是\(O(\sum_{i=1}^{n}\lfloor \frac ni\rfloor*\log_2{n})\)
查询依然是数论分块,复杂度是\(O(n\sqrt{n}\log_{2}n)\)
tips:取模自然溢出即可

code

#include<cstdio>
#include<algorithm>
using namespace std;
const int N = 100005;
int gi()
{
	int x=0,w=1;char ch=getchar();
	while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
	if (ch=='-') w=0,ch=getchar();
	while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
	return w?x:-x;
}
struct query{
	int n,m,a,id;
	bool operator < (const query &zsy) const
		{return a<zsy.a;}
}q[N];
int T,maxN,pri[N],tot,zhi[N],mu[N],low[N],sum[N],sigma[N],id[N],c[N],ans[N];
void Mobius()
{
	zhi[1]=mu[1]=low[1]=sum[1]=sigma[1]=1;
	for (int i=2;i<=maxN;i++)
	{
		if (!zhi[i])
		{
			low[i]=pri[++tot]=i;
			mu[i]=-1;sum[i]=sigma[i]=i+1;
		}
		for (int j=1;j<=tot&&i*pri[j]<=maxN;j++)
		{
			zhi[i*pri[j]]=1;
			if (i%pri[j]==0)
			{
				low[i*pri[j]]=low[i]*pri[j];
				sum[i*pri[j]]=sum[i]+low[i*pri[j]];
				sigma[i*pri[j]]=sigma[i]/sum[i]*sum[i*pri[j]];
				break;
			}
			mu[i*pri[j]]=-mu[i];
			low[i*pri[j]]=pri[j];
			sum[i*pri[j]]=pri[j]+1;
			sigma[i*pri[j]]=sigma[i]*sigma[pri[j]];
		}
	}
}
void Modify(int k,int val){for (;k<=maxN;k+=k&-k) c[k]+=val;}
int Query(int k){int res=0;for (;k;k-=k&-k) res+=c[k];return res;}
bool cmp(int x,int y){return sigma[x]<sigma[y];}
int calc(int n,int m)
{
	int i=1,j,pre=0,cur,res=0;
	while (i<=n)
	{
		j=min(n/(n/i),m/(m/i));
		cur=Query(j);
		res+=(n/i)*(m/i)*(cur-pre);
		i=j+1;pre=cur;
	}
	return res;
}
int main()
{
	T=gi();
	for (int i=1;i<=T;i++)
	{
		q[i]=(query){gi(),gi(),gi(),i};
		if (q[i].n>q[i].m) swap(q[i].n,q[i].m);
		maxN=max(maxN,q[i].n);
	}
	Mobius();
	for (int i=1;i<=maxN;i++) id[i]=i;
	sort(q+1,q+T+1);sort(id+1,id+maxN+1,cmp);
	for (int i=1,p=1;i<=T;i++)
	{
		for (;p<=maxN&&sigma[id[p]]<=q[i].a;p++)
			for (int j=id[p];j<=maxN;j+=id[p])
				Modify(j,sigma[id[p]]*mu[j/id[p]]);
		ans[q[i].id]=calc(q[i].n,q[i].m);
	}
	for (int i=1;i<=T;i++)
		printf("%d\n",ans[i]<0?ans[i]+2147483647+1:ans[i]);
	return 0;
}
posted @ 2018-01-17 20:45  租酥雨  阅读(165)  评论(0编辑  收藏  举报