ETL基础知识-1 : 基本认知

非原创,摘自:https://www.cnblogs.com/yjd_hycf_space/p/7772722.html

概念

ETL(Extract-Transform-Load)是将业务系统的数据经过抽取清洗转换之后加载到数据仓库的过程,目的是将企业中的分散、零乱、标准不统一的数据整合到一起,为企业的决策提供分析依据。

ETL的设计分三部分:数据抽取数据的清洗转换数据的加载

ETL过程就是数据流动的过程。

ETL的实现

常用方法的有三种。

一种是借助ETL工具(如Oracle的OWB、SQL Server 2000的DTS、SQL Server2005的SSIS服务、Informatic等)实现,

一种是SQL方式实现,另外一种是ETL工具和SQL相结合。

前两种方法各有各的优缺点:

借助工具可以快速的建立起ETL工程,屏蔽了复杂的编码任务,提高了速度,降低了难度,但是缺少灵活性。

SQL的方法优点是灵活,提高ETL运行效率,但是编码复杂,对技术要求比较高。

第三种是综合了前面二种的优点,会极大地提高ETL的开发速度和效率。

一、 数据的抽取(Extract)

       这一部分需要在调研阶段做大量的工作,首先要搞清楚数据是从几个业务系统中来,各个业务系统的数据库服务器运行什么DBMS,是否存在手工数据,手工数据量有多大,是否存在非结构化的数据等等,当收集完这些信息之后才可以进行数据抽取的设计。

       对于数据量大的系统,必须考虑增量抽取。一般情况下,业务系统会记录业务发生的时间戳,我们可以用来做增量的标志。

二、数据的清洗转换(Cleaning、Transform)

      数据清洗的任务是过滤那些不符合要求的数据,将过滤的结果交给业务主管部门,确认是否过滤掉还是由业务单位修正之后再进行抽取。

      不符合要求的数据主要是有不完整的数据错误的数据重复的数据三大类。

   数据清洗是一个反复的过程,不可能在几天内完成,只有不断的发现问题,解决问题。对于是否过滤,是否修正一般要求客户确认,对于过滤掉的数据,写入Excel文件或者将过滤数据写入数据表,在ETL开发的初期可以每天向业务单位发送过滤数据的邮件,促使他们尽快地修正错误,同时也可以做为将来验证数据的依据。数据清洗需要注意的是不要将有用的数据过滤掉,对于每个过滤规则认真进行验证,并要用户确认。

      数据转换的任务主要进行不一致的数据转换、数据粒度的转换,以及一些商务规则的计算。

  (1)不一致数据转换:这个过程是一个整合的过程,将不同业务系统的相同类型的数据统一。

  (2)数据粒度的转换:业务系统一般存储非常明细的数据,而数据仓库中数据是用来分析的,不需要非常明细的数据。一般情况下,会将业务系统数据按照数据仓库粒度进行聚合。

  (3)商务规则的计算:不同的企业有不同的业务规则、不同的数据指标,这些指标有的时候不是简单的加加减减就能完成,这个时候需要在ETL中将这些数据指标计算好了之后存储在数据仓库中,以供分析使用。

三、ETL日志、警告发送

  ETL日志分为三类。

  一类是执行过程日志,这一部分日志是在ETL执行过程中每执行一步的记录,记录每次运行每一步骤的起始时间,影响了多少行数据,流水账形式。

  一类是错误日志,当某个模块出错的时候写错误日志,记录每次出错的时间、出错的模块以及出错的信息等。

  第三类日志是总体日志,只记录ETL开始时间、结束时间是否成功信息。如果使用ETL工具,ETL工具会自动产生一些日志,这一类日志也可以作为ETL日志的一部分。

  警告发送,如果ETL出错了,不仅要形成ETL出错日志,而且要向系统管理员发送警告。发送警告的方式多种,一般常用的就是给系统管理员发送邮件,并附上出错的信息,方便管理员排查错误。

其他特点

  一是数据同步,它不是一次性倒完数据就拉到,它是经常性的活动,按照固定周期运行的,甚至现在还有人提出了实时ETL的概念。

  二是数据量,一般都是巨大的,值得你将数据流动的过程拆分成E、T和L。

       现在有很多成熟的工具提供ETL功能,且不说他们的好坏。从应用角度来说,ETL的过程其实不是非常复杂,这些工具给数据仓库工程带来和很大的便利性,特别是开发的便利和维护的便利。但另一方面,开发人员容易迷失在这些工具中。举个例子,VB是一种非常简单的语言并且也是非常易用的编程工具,上手特别快,但是真正VB的高手有多少?微软设计的产品通常有个原则是“将使用者当作傻瓜”,在这个原则下,微软的东西确实非常好用,但是对于开发者,如果你自己也将自己当作傻瓜,那就真的傻了。ETL工具也是一样,这些工具为我们提供图形化界面,让我们将主要的精力放在规则上,以期提高开发效率。从使用效果来说,确实使用这些工具能够非常快速地构建一个job来处理某个数据,不过从整体来看,并不见得他的整体效率会高多少。问题主要不是出在工具上,而是在设计、开发人员上。他们迷失在工具中,没有去探求ETL的本质。可以说这些工具应用了这么长时间,在这么多项目、环境中应用,它必然有它成功之处,它必定体现了ETL的本质。如果我们不透过表面这些工具的简单使用去看它背后蕴涵的思想,最终我们作出来的东西也就是一个个独立的job,将他们整合起来仍然有巨大的工作量。大家都知道“理论与实践相结合”,如果在一个领域有所超越,必须要在理论水平上达到一定的高度.

 

posted @ 2020-05-26 15:06  周家飞少  阅读(412)  评论(0编辑  收藏  举报