八、数据仓库数据质量监控
一、监控
1.日常监控
- 数据落地监控
- 数据掉0监控:实际扩展一下就是数据量阈值监控,少于某个量就告警
- 重复数据监控:很多表一定要监控重复数据的,这点至关重要。
- 关键指标监控
- 数据同比环比监控
2. 数据对账
这点主要会体现到实时数据上,特别是Kafka数据落地,必须要有一个监控机制来知道我们的数据落地情况。
当然离线数据同样需要数据对账,对账方法有很多,比如可以和业务库来对比。
3. 性能监控
我把这点理解为数据可用性监控,我认为这是一个很重要的点。 如果你做的数据别人用起来十分不爽,或者慢得要死根本没法用,那做了和没做有什么区别?
感觉在性能监控上就是有几个点要注意:
-
查询性能,比如es的某个索引,在不同时间段的查询响应速度,同理presto、hive、kylin这些的查询都需要注意一下,这点可以通过任务监控来观察。
-
数据读写影响,机器故障影响,这点平常不太关注,不过像es这种,在写入数据的时候其实会影响读数据的,需要监控一下,并做相应调整。
二、告警
告警就不用说了,微信、短信和电话都很有必要。
定期的邮件汇总告警也很有必要。
然后有很多的告警可以考虑一个告警报表系统来展示,特别像是数据量趋势这种监控内容,可视化的对比比较有效。
三、 多数据源
在目前的大数据场景下,各种开源组件引入的十分多,而且会有新的组件不停地引入,因此要考虑到对不同组件的数据监控。
目前笔者接触比较多的会有Hive(presto、spark sql)、Mysql、ES、Redis、Kylin(主要是构建的cube)这些常用的,但是不能排除图数据库(neo4j、orientdb)和druid这些组件引入的可能性。
怎样监控
数据监控相对来讲是属于后台系统,不能算是对外的业务系统,一般重要性可能会被挑战,虽说如此,它还是值得一做的。 不过可能要换一些思路来做,如何快速地实现、并抓住核心的功能点是值得深思的一件事。。
-
规则引擎:来定义各种告警规则,可能是一条sql模板,也可能是一些具体的算法。
-
执行引擎:要来执行各种规则,同时要考虑各种数据源的差异。
-
元数据系统:数据质量监控本来也算是元数据系统的一部分,我们这分开来讲,但是无论如何,在配置表的告警信息时,还是要和元数据系统结合的。
下面会分开来分析一下这几个组件。
一、 规则引擎
举几个典型例子:数据延迟到达、数据同比环比、数据趋势、一些定制化算法。
这块的设计可以很灵活,也可以临时开发一个简单的。这里提几个点。
1.Sql模板
在大多数存储引擎中,通过Sql使用的数据(比如Hive、Mysql)会是比较重要的一种数据,这种数据我们可以考虑用Sql模板。
我们会有一张表或者一些配置文件来定义我们的规则。简单来讲,比如说数据同比环比,我们可以写一个presto的sql模板,来和历史数据进行对比,这种sql很简单,自己写好模板就行。
这种模板最简单,也最快,我相信能解决大部分问题。
2. 元数据
很多数据库都是有元数据管理的,比如Hive,它的表的行数都是在元数据库中有存放的,我们可以直接通过Hive的元数据来抓取表的每天的数据量的。
注意:这点十分重要,它能节省我们大部分的工作,而且比较稳定,但是能满足的功能比较少。需要结合其它来使用。
3. 自定义模板
有很多算法不是简单的sql就能搞定的,而且很多存储系统也不是所有都支持sql。比如es这种。因此就需要一些定制化的算法来实现。
这方面的主要工作量应该是在执行引擎上,但是在规则引擎应该有设计到。
二、执行引擎
这块应该是比较重要的。 实现起来可以很简单,也可以很复杂。下面大概聊一下。
1. Sql执行
很多规则都可以通过sql来执行的,这点在规则引擎里面提到了。
其实我很推荐,刚开始的比较粗糙的监控都可以这样来做。 我们提前配置好大部分的sql模板,然后需要监控哪张表了就在这张表配置一下就行。
具体的执行引擎的话可以考虑presto或者spark sql,特别大的任务可以考虑hive。
优点:
-
简单,方便实现
-
能满足大部分的需求
缺点:
-
灵活度不够,比如es,对sql支持太差
-
速度慢:很多sql执行起来会比较慢,特别是使用hive引擎的时候,会巨慢。
-
不稳定:一些监控会不太稳定,比如重复数据监控,对一些大的表来讲,用presto这种,是很难出结果的,经常会挂掉,但是换成hive的话又会很慢。
那么如何解决?
嗯,解决的话,我只有下面几个思路:
-
合理的任务调度,一般集群都是能容纳很多任务的,合适地调度监控任务比较重要。
-
合理地替换执行引擎,这个下一节会提供一种方案。
-
合理的任务依赖,比如说是重复数据监控,这点必然会依赖于数据是否到达,如果数据没达到就没必要执行重复数据监控的程序。
2. 直接获取数据量
前面提到了Sql执行的一个执行效率问题,我们这节提供一个优化的方法。因为Hive目前来讲是十分重要的一种引擎了,所以单说Hive。
Hive是有元数据管理的,它的元数据库中是记录Hive的所有表的记录数的,这些记录数可以直接用作数据量相关的监控,比如数据掉零、数据量环比同比、数据量趋势等。
3. 算法执行引擎
很多算法可以通过自定义地方式实现,这一点实现起来就会比较复杂一些。
因为定制化比较强,在设计这一块的话需要一个比较灵活的架构,这里不再展开来讲,因为在常见的数据领域里面,前两点已经能满足很多需求了。
4. 多数据源
多数据源这一块,在规则引擎里面需要加一些区分,因为这毕竟和元数据系统关联,区分还是比较简单。
在执行的时候,可能要稍微分开来实现。不过相对来讲不是很复杂。
数据校验
数据校验之前是没在意的,现在把这一块补进来。比较偏个人理解,暂时还没形成完整的知识体系。主要就是说如何判断自己的数据是正常的、可以被信任的,这一块在数据质量中应该是十分重要的。
方法的话可以有交叉验证、异常波动监控等。
转载
- 作者:木东居士