Elasticsearch(2) 数据搜索

本文介绍如何在Elasticsearch中对数据进行搜索。

1、简述

在Elasticsearch中的搜索中,有两类搜索:

  • queries
  • aggregations

区别在于:query可以进行全文搜索,而aggregation可以进行统计及分析。当然可以结合query及aggregation一起使用,比如先对文档进行搜索,然后进行aggregation。

GET blogs/_search
{
  "query": {
    "match": {
      "title": "community"
    }
  },
  "aggregations": {
    "top_authors": {
      "terms": {
        "field": "author"
      }
    }
  }
}

在上面搜索中,先搜索title含有community的文档,然后再对数据进行aggregation。

2、搜索所有文档

使用如下命令搜索所有文档:

GET /_search

此时没指定任何index,因此搜索该cluster下的所有的index。默认返回个数是10个,除非设定size:

GET /_search?size=20

上面命令也等同于:

GET /_all/_search

可以对多个index进行搜索:

POST /index1,index2,index3/_search

也可以这么写,表明针对所有以index开头的索引进行搜索,但排除index3索引。

POST /index*,-index3/_search

如果想对特定的index进行搜索,可以这样:

GET twitter/_search

上图中,可以看到twiter索引里有7个文档。再hits数组里可以看到所有的结果。同时也可以看到_score 的项,表示我们搜索结果的相关度。这个分数值越高表明搜索匹配的相关度越高。再默认没有sort的情况下,所有搜索的结果读书安装分数由大到小来进行排列的。

在默认情况下,可以得到10个结果,当然可以通过设置size参数来得到想要的个数。同时也可以配合from来进行分页。

GET twitter/_search?size=2&from=2

并且只显示两个文档。通过这种方法可以对文档进行分页显示。

上面查询类似DSL查询的如下语句:

GET twitter/_search
{
  "size": 2,
  "from": 2, 
  "query": {
    "match_all": {}
  }
}

可以通过filter_path来控制输出的较少的字段,比如:

GET twitter/_search?filter_path=hits.total

3、_source filtering

通过_source来定义想要返回的字段:

GET twitter/_search
{
  "_source": ["user", "city"],
  "query": {
    "match_all": {
    }
  }
}

也可以使用这种方式

GET twitter/_search
{
  "_source": {
    "includes": ["user", "city"]
  },
  "query": {
    "match_all": {
    }
  }
}

可以设置_source为false,这样不返回任何_source信息:

GET twitter/_search
{
  "_source": false,
  "query": {
    "match": {
      "user": "张三"
    }
  }
}

也可以接收通配符形式的控制:

GET twitter/_search
{
  "_source": {
    "includes": [
      "user*",
      "location*"
    ],
    "excludes": [
      "*.lat"
    ]
  },
  "query": {
    "match_all": {}
  }
}

如果我们把 _source 设置为[],则显示所有的字段:

GET twitter/_search
{
  "_source": [],
  "query": {
    "match_all": {
    }
  }
}

 4、script fields

有事,我们想要的field可能在_source里根本没有,则可以使用script field来生成这些field。允许为每个匹配返回script evaluation(基于不用的字段):

GET twitter/_search
{
  "query": {
    "match_all": {}
  },
  "script_fields": {
    "years_to_100": {
      "script": {
        "lang": "painless",
        "source": "100-doc['age'].value"
      }
    },
    "year_of_birth":{
      "script": "2019 - doc['age'].value"
    }
  }
}

注意,使用script的方法来生成查询结果对于大量的文档来说,可能会占用大量资源。doc在这里指定是doc value。否则的话,我们需要使用ctx._source来做一些搜索动作。所以可以把上面命令修改为:

GET twitter/_search
{
  "query": {
    "match_all": {}
  },
  "script_fields": {
    "years_to_100": {
      "script": {
        "lang": "painless",
        "source": "100-params._source['age']"
      }
    },
    "year_of_birth":{
      "script": "2019 - params._source['age']"
    }
  }
}

因为age是long数据类型。它是由doc value的,所以我们通过doc['age']来访问,而且这些访问是比较快的。

5、count api

使用_count来查询索引里有多少文档:

GET twitter/_count

可以根据满足条件来查询文档数量(比如,可以查询到city为北京的所有文档的数量):

GET twitter/_count
{
  "query": {
    "match": {
      "city": "北京"
    }
  }
}

6、settings

通过接口获取一个index的settings:

GET twitter/_settings

从图中可以看到twitter索引中有多少个shards及多少个reblicas。我们也可以通过如下的接口来设置:

PUT twitter
{
  "settings": {
    "number_of_shards": 1,
    "number_of_replicas": 1
  }
}

一旦把number_of_shards定下来了,就不可以修改了。除非把index删除,并重新index它。因为每个文档存储到哪一个shard是和number_of_shards这个数值有关的。一旦这个数值发生改变,那么之后寻找哪个文档所在的shard就会不准确。

 7、mapping

查询当前index的mapping

GET twitter/_mapping

从上图的显示中可以看出来location里的经纬度是一个multi-field类型。这显然不是我们所需的。正确的类型应该是:geo_point。因此需要修正我们的mapping。

 注意:

我们不能为已经建立好的index动态修改mapping。这是因为一旦修改,那么之前建立的索引就变成不能搜索了。一种办法是reindex从而重新建立我们的索引。如果之前的mapping加入新的字段,那么欧盟可以不用重新建立索引。

 为了能能够正确地创建我们的mapping,我们必须先把之前的twitter索引删除掉,并同时使用settings来创建这个index。具体的步骤如下:

DELETE twitter
PUT twitter
{
  "settings": {
    "number_of_shards": 1,
    "number_of_replicas": 1
  }
}
PUT twitter/_mapping
{
  "properties": {
    "address": {
      "type": "text",
      "fields": {
        "keyword": {
          "type": "keyword",
          "ignore_above": 256
        }
      }
    },
    "age": {
      "type": "long"
    },
    "city": {
      "type": "text",
      "fields": {
        "keyword": {
          "type": "keyword",
          "ignore_above": 256
        }
      }
    },
    "country": {
      "type": "text",
      "fields": {
        "keyword": {
          "type": "keyword",
          "ignore_above": 256
        }
      }
    },
    "location": {
      "type": "geo_point"
    },
    "message": {
      "type": "text",
      "fields": {
        "keyword": {
          "type": "keyword",
          "ignore_above": 256
        }
      }
    },
    "province": {
      "type": "text",
      "fields": {
        "keyword": {
          "type": "keyword",
          "ignore_above": 256
        }
      }
    },
    "uid": {
      "type": "long"
    },
    "user": {
      "type": "text",
      "fields": {
        "keyword": {
          "type": "keyword",
          "ignore_above": 256
        }
      }
    }
  }
}

重新查看mapping,此时可以看到已经创建好了新的mapping,并更正了location类型:

GET twitter/_mapping

再次运行之前的bulk接口,并把所需要的数据导入到twitter索引中。

 

POST _bulk
{ "index" : { "_index" : "twitter", "_id": 1} }
{"user":"双榆树-张三","message":"今儿天气不错啊,出去转转去","uid":2,"age":20,"city":"北京","province":"北京","country":"中国","address":"中国北京市海淀区","location":{"lat":"39.970718","lon":"116.325747"}}
{ "index" : { "_index" : "twitter", "_id": 2 }}
{"user":"东城区-老刘","message":"出发,下一站云南!","uid":3,"age":30,"city":"北京","province":"北京","country":"中国","address":"中国北京市东城区台基厂三条3号","location":{"lat":"39.904313","lon":"116.412754"}}
{ "index" : { "_index" : "twitter", "_id": 3} }
{"user":"东城区-李四","message":"happy birthday!","uid":4,"age":30,"city":"北京","province":"北京","country":"中国","address":"中国北京市东城区","location":{"lat":"39.893801","lon":"116.408986"}}
{ "index" : { "_index" : "twitter", "_id": 4} }
{"user":"朝阳区-老贾","message":"123,gogogo","uid":5,"age":35,"city":"北京","province":"北京","country":"中国","address":"中国北京市朝阳区建国门","location":{"lat":"39.718256","lon":"116.367910"}}
{ "index" : { "_index" : "twitter", "_id": 5} }
{"user":"朝阳区-老王","message":"Happy BirthDay My Friend!","uid":6,"age":50,"city":"北京","province":"北京","country":"中国","address":"中国北京市朝阳区国贸","location":{"lat":"39.918256","lon":"116.467910"}}
{ "index" : { "_index" : "twitter", "_id": 6} }
{"user":"虹桥-老吴","message":"好友来了都今天我生日,好友来了,什么 birthday happy 就成!","uid":7,"age":90,"city":"上海","province":"上海","country":"中国","address":"中国上海市闵行区","location":{"lat":"31.175927","lon":"121.383328"}}

 至此,我们已经完整地建立了我们所需要的索引。在下面,我们开始使用DSL(Domain Specific language)来进行查询。

8、查询数据

1)match query

GET twitter/_search
{
  "query": {
    "match": {
      "city": "北京"
    }
  }
}

从上述查询结果来看,可以看到有5个用户来自北京。而且查询出来的结果是按照关联(relavance)来进行排序的。

也可以使用script query来完成:

GET twitter/_search
{
  "query": {
    "script": {
      "script": {
        "source": "doc['city.keyword'].contains(params.name)",
        "lang": "painless",
        "params": {
          "name": "北京"
        }
      }
    }
  }
}

script query 和match query查询结果是一样的。但是不建议使用script query方法(比较低效)。假如文档是几百万或者PB级的数据量,那么上面的运算可能被执行无数次,那么可能需要巨大的计算量。在这种情况下,我们需要考虑ingest的时候做计算。

上述的搜索也可以这么实现:

GET twitter/_search?q=city:"北京"

 显示如下:

_score项说明:表示与搜索结果相关度。分值越高,表明搜索匹配的相关度越高。在默认没有sort的情况下,所有的搜索的结果都是按照分数由大到小来进行排列的。

如果不要score,我们可以选择filter来完成。

GET twitter/_search
{
  "query": {
    "bool": {
      "filter": {
        "term": {
          "city.keyword": "北京"
        }
      }
    }
  }
}

从返回的结果来看,_score项为0.对于这种搜索,只要yes或no。我们并不关心她们的相关性。city.keyword表示在mapping中是一个multi-field项。它既是text也是keyword类型。对于一个keyword类型的项来说,这个项里面保存所有字符都被当作一个字符串。它们在建立文档时,不需要进行index。keyword字段用于精确搜索,aggregation和排序(sorting)。所以在filter中,使用term来完成查询。

GET twitter/_search
{
  "query": {
    "constant_score": {
      "filter": {
        "term": {
          "city.keyword": {
            "value": "北京"
          }
        }
      }
    }
  }
}

使用match query时,默认的操作是or。

GET twitter/_search
{
  "query": {
    "match": {
      "user": {
        "query": "朝阳区-老贾",
        "operator": "or"
      }
    }
  }
}

等同于

GET twitter/_search
{
 "query": {
   "match": {
     "user": "朝阳区-老贾"
   }
 }
}

因为默认操作是or,上面的查询的结果是任何匹配:"朝"、"阳"、"区"、"老"和"贾"这5个字中的任何一个将被显示。具体数据显示如下(注意,score相关性的大小)。

{
  "took" : 1,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 5,
      "relation" : "eq"
    },
    "max_score" : 4.4209847,
    "hits" : [
      {
        "_index" : "twitter",
        "_type" : "_doc",
        "_id" : "4",
        "_score" : 4.4209847,
        "_source" : {
          "user" : "朝阳区-老贾",
          "message" : "123,gogogo",
          "uid" : 5,
          "age" : 35,
          "city" : "北京",
          "province" : "北京",
          "country" : "中国",
          "address" : "中国北京市朝阳区建国门",
          "location" : {
            "lat" : "39.718256",
            "lon" : "116.367910"
          }
        }
      },
      {
        "_index" : "twitter",
        "_type" : "_doc",
        "_id" : "5",
        "_score" : 2.9019678,
        "_source" : {
          "user" : "朝阳区-老王",
          "message" : "Happy BirthDay My Friend!",
          "uid" : 6,
          "age" : 50,
          "city" : "北京",
          "province" : "北京",
          "country" : "中国",
          "address" : "中国北京市朝阳区国贸",
          "location" : {
            "lat" : "39.918256",
            "lon" : "116.467910"
          }
        }
      },
      {
        "_index" : "twitter",
        "_type" : "_doc",
        "_id" : "2",
        "_score" : 0.8713734,
        "_source" : {
          "user" : "东城区-老刘",
          "message" : "出发,下一站云南!",
          "uid" : 3,
          "age" : 30,
          "city" : "北京",
          "province" : "北京",
          "country" : "中国",
          "address" : "中国北京市东城区台基厂三条3号",
          "location" : {
            "lat" : "39.904313",
            "lon" : "116.412754"
          }
        }
      },
      {
        "_index" : "twitter",
        "_type" : "_doc",
        "_id" : "6",
        "_score" : 0.4753614,
        "_source" : {
          "user" : "虹桥-老吴",
          "message" : "好友来了都今天我生日,好友来了,什么 birthday happy 就成!",
          "uid" : 7,
          "age" : 90,
          "city" : "上海",
          "province" : "上海",
          "country" : "中国",
          "address" : "中国上海市闵行区",
          "location" : {
            "lat" : "31.175927",
            "lon" : "121.383328"
          }
        }
      },
      {
        "_index" : "twitter",
        "_type" : "_doc",
        "_id" : "3",
        "_score" : 0.4356867,
        "_source" : {
          "user" : "东城区-李四",
          "message" : "happy birthday!",
          "uid" : 4,
          "age" : 30,
          "city" : "北京",
          "province" : "北京",
          "country" : "中国",
          "address" : "中国北京市东城区",
          "location" : {
            "lat" : "39.893801",
            "lon" : "116.408986"
          }
        }
      }
    ]
  }
}

可以设置minimum_should_match来设置至少匹配的term。

GET twitter/_search
{
  "query": {
    "match": {
      "user": {
        "query": "朝阳区-老贾",
        "operator": "or",
        "minimum_should_match": 3
      }
    }
  }
}

上面显示,我们至少要匹配"朝"、"阳"、"区"、"老"和"贾"这5个字中的3个字才可以。显示结果如下:

{
  "took" : 0,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 2,
      "relation" : "eq"
    },
    "max_score" : 4.4209847,
    "hits" : [
      {
        "_index" : "twitter",
        "_type" : "_doc",
        "_id" : "4",
        "_score" : 4.4209847,
        "_source" : {
          "user" : "朝阳区-老贾",
          "message" : "123,gogogo",
          "uid" : 5,
          "age" : 35,
          "city" : "北京",
          "province" : "北京",
          "country" : "中国",
          "address" : "中国北京市朝阳区建国门",
          "location" : {
            "lat" : "39.718256",
            "lon" : "116.367910"
          }
        }
      },
      {
        "_index" : "twitter",
        "_type" : "_doc",
        "_id" : "5",
        "_score" : 2.9019678,
        "_source" : {
          "user" : "朝阳区-老王",
          "message" : "Happy BirthDay My Friend!",
          "uid" : 6,
          "age" : 50,
          "city" : "北京",
          "province" : "北京",
          "country" : "中国",
          "address" : "中国北京市朝阳区国贸",
          "location" : {
            "lat" : "39.918256",
            "lon" : "116.467910"
          }
        }
      }
    ]
  }
}

也可以修改为and操作。

GET twitter/_search
{
  "query": {
    "match": {
      "user": {
        "query": "朝阳区-老贾",
        "operator": "and"
      }
    }
  }
}

显示结果:

{
  "took" : 15,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 1,
      "relation" : "eq"
    },
    "max_score" : 4.4209847,
    "hits" : [
      {
        "_index" : "twitter",
        "_type" : "_doc",
        "_id" : "4",
        "_score" : 4.4209847,
        "_source" : {
          "user" : "朝阳区-老贾",
          "message" : "123,gogogo",
          "uid" : 5,
          "age" : 35,
          "city" : "北京",
          "province" : "北京",
          "country" : "中国",
          "address" : "中国北京市朝阳区建国门",
          "location" : {
            "lat" : "39.718256",
            "lon" : "116.367910"
          }
        }
      }
    ]
  }
}

在这种情况下,需要索引匹配5个字才可以。显然我们可以通过使用and来提高搜索的精度。

 2)Ids query

可以通过id来查询。比如:

GET twitter/_search
{
  "query": {
    "ids": {
      "values": ["1", "2"]
    }
  }
}

上述查询将返回id为1、2的文档。

3)multi_match

上面的搜索之中,我们特别指明一个专有的field来进行搜索,但是在很多情况下,我们并不知道哪一个是field含有这个关键字。在这种情况下,我们可以使用multi_match来进行搜索:

GET twitter/_search
{
  "query": {
    "multi_match": {
      "query": "朝阳",
      "fields": [
        "user",
        "address^3",
        "message"
      ],
      "type": "best_fields"
    }
  }
}

上述代码中,multi_search的type为best_fields,也就是说它搜索了3个字段。最终分数_score是按照得分最高那个字段分数为准。代码中可以同时对fields:user,address,message进行搜索,但是我们对address含有"朝阳"的文档的分数进行3倍加权。返回结果:

 "hits" : [
      {
        "_index" : "twitter",
        "_type" : "_doc",
        "_id" : "5",
        "_score" : 6.1777167,
        "_source" : {
          "user" : "朝阳区-老王",
          "message" : "Happy BirthDay My Friend!",
          "uid" : 6,
          "age" : 50,
          "city" : "北京",
          "province" : "北京",
          "country" : "中国",
          "address" : "中国北京市朝阳区国贸",
          "location" : {
            "lat" : "39.918256",
            "lon" : "116.467910"
          }
        }
      },
      {
        "_index" : "twitter",
        "_type" : "_doc",
        "_id" : "4",
        "_score" : 5.9349246,
        "_source" : {
          "user" : "朝阳区-老贾",
          "message" : "123,gogogo",
          "uid" : 5,
          "age" : 35,
          "city" : "北京",
          "province" : "北京",
          "country" : "中国",
          "address" : "中国北京市朝阳区建国门",
          "location" : {
            "lat" : "39.718256",
            "lon" : "116.367910"
          }
        }
      }
    ]

4)Prefix query

返回提供的字段中包含特定前缀的文档。如返回user字段中包含"朝"开头的文档:

GET twitter/_search
{
  "query": {
    "prefix": {
      "user": {
        "value": "朝"
      }
    }
  }
}

5) Term query

term query 会在给定字段中进行精确的字词匹配。因此,您需要提供准确的术语以及获取正确的结果。

GET twitter/_search
{
  "query": {
    "term": {
      "user.keyword": {
        "value": "朝阳区-老贾"
      }
    }
  }
}

在这里,使用 user.keyword 来对“朝阳区-老贾”进行精确匹配查询相应的文档。

 6)Terms query

对多个 terms 进行查询,可以使用如下的方式。

GET twitter/_search
{
  "query": {
    "terms": {
      "user.keyword": [
        "双榆树-张三",
        "东城区-老刘"
      ]
    }
  }
}

7)Term_set query

查询在提供的字段中包含最少数目的精确术语的文档。除可以定义返回文档所需的匹配术语数之外,terms_set 查询与术语查询相同。 

PUT /job-candidates
{
  "mappings": {
    "properties": {
      "name": {
        "type": "keyword"
      },
      "programming_languages": {
        "type": "keyword"
      },
      "required_matches": {
        "type": "long"
      }
    }
  }
}
PUT /job-candidates/_doc/1?refresh
{
  "name": "Jane Smith",
  "programming_languages": [ "c++", "java" ],
  "required_matches": 2
}
PUT /job-candidates/_doc/2?refresh
{
  "name": "Jason Response",
  "programming_languages": [ "java", "php" ],
  "required_matches": 2
}
GET /job-candidates/_search
{
  "query": {
    "terms_set": {
      "programming_languages": {
        "terms": [ "c++", "java", "php" ],
        "minimum_should_match_field": "required_matches"
      }
    }
  }
}

在上面,我们为job-candidates索引创建了两文档。此时需要找出在programming_languages中同时包含c++、java以及php中至少两个term的文档。此时上述代码使用了一个在文档中定义的字段required_matches来定义最少满足要求的term个数。当如果没有一个专有的字段来定义这个字段的话,另外一种方式是使用mininum_should_match_script来定义:

GET /job-candidates/_search
{
  "query": {
    "terms_set": {
      "programming_languages": {
        "terms": [ "c++", "java", "php" ],
        "minimum_should_match_script": {
          "source": "2"
        }
      }
    }
  }
}

上面标示要至少同时满足2个及以上的term。上面搜索结果为:

{
  "took" : 30,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 2,
      "relation" : "eq"
    },
    "max_score" : 1.1005894,
    "hits" : [
      {
        "_index" : "job-candidates",
        "_type" : "_doc",
        "_id" : "1",
        "_score" : 1.1005894,
        "_source" : {
          "name" : "Jane Smith",
          "programming_languages" : [
            "c++",
            "java"
          ],
          "required_matches" : 2
        }
      },
      {
        "_index" : "job-candidates",
        "_type" : "_doc",
        "_id" : "2",
        "_score" : 1.1005894,
        "_source" : {
          "name" : "Jason Response",
          "programming_languages" : [
            "java",
            "php"
          ],
          "required_matches" : 2
        }
      }
    ]
  }
}

也就是说之前的两个文档都同时满足条件。如果使用如下方式来进行搜索:

GET /job-candidates/_search
{
  "query": {
    "terms_set": {
      "programming_languages": {
        "terms": [ "c++", "java", "nodejs" ],
        "minimum_should_match_script": {
          "source": "2"
        }
      }
    }
  }
}

我们将看到只有一个文档是满足条件的。

9、复合查询(compound query)

格式如下:

POST _search
{
  "query": {
    "bool" : {
      "must" : {
        "term" : { "user" : "kimchy" }
      },
      "filter": {
        "term" : { "tag" : "tech" }
      },
      "must_not" : {
        "range" : {
          "age" : { "gte" : 10, "lte" : 20 }
        }
      },
      "should" : [
        { "term" : { "tag" : "wow" } },
        { "term" : { "tag" : "elasticsearch" } }
      ],
      "minimum_should_match" : 1,
      "boost" : 1.0
    }
  }
}

从上面代码中可以看出,它是由 bool 下面的 must, must_not, should 及 filter 共同来组成的。

用例:

GET twitter/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "city": "北京"
          }
        },
        {
          "match": {
            "age": "30"
          }
        }
      ]
    }
  }
}

这个查询要求是必须是北京城市的,并且年龄刚好是30岁的。

如果想知道为什么的出来这样的结果,我们可以在搜索的指令中加如"explained":"true"。

GET twitter/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "city": "北京"
          }
        },
        {
          "match": {
            "age": "30"
          }
        }
      ]
    }
  },
  "explain": true
}

这样在显示结果中可以看到一些解释:

同样如果需要排除某些条件,我们可以使用must_not。

GET twitter/_search
{
  "query": {
    "bool": {
      "must_not": [
        {
          "match": {
            "city": "北京"
          }
        }
      ]
    }
  }
}

这个代码表示我们想寻找不在北京的所有文档。所以显示的文档只有一个,即来自上海的文档。

should表述"或"的意思,也就是有就更好,没有就算了。比如:

GET twitter/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "age": "30"
          }
        }
      ],
      "should": [
        {
          "match_phrase": {
            "message": "Happy birthday"
          }
        }
      ]
    }
  }
}

搜索意思是age必须是30岁,如果文档中含有"Happy birthday",则相关性会更高,那么搜索得到的结果会排在前面。

在上面的结果中,我们可以看到:同样是年龄30岁的两个文档,第一个文档由于含有 “Happy birthday” 这个字符串在 message 里,所以它的结果是排在前面的,相关性更高。我们可以从它的 _score 中可以看出来。第二个文档里 age 是30,但是它的 message 里没有 “Happy birthday” 字样,但是它的结果还是有显示,只是得分比较低一些。

在使用上面的复合查询时,bool 请求通常是 must,must_not, should 及 filter 的一个或其中的几个一起组合形成的。我们必须注意的是:

查询类型对 hits 及 _score 的影响

Clause 影响 #hits 影响 _score
must Yes Yes
must_not Yes No
should No* Yes
filter Yes No

 

如上面的表格所示,should 只有在特殊的情况下才会影响 hits。在正常的情况下它不会影响搜索文档的个数。那么在哪些情况下会影响搜索的结果呢?这种情况就是针对只有 should 的搜索情况,也就是如果你在 bool query 里,不含有 must, must_not 及 filter 的情况下,一个或更多的 should 必须有一个匹配才会有结果,比如:

GET twitter/_search
{
  "query": {
    "bool": {
      "should": [
        {
          "match": {
            "city": "北京"
          }
        },
        {
          "match": {
            "city": "武汉"
          }
        }
      ]
    }
  }
}

10、位置查询

Elasticsearch最厉害的是位置查询。这在很多关系数据库里并没有。例如:

GET twitter/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "address": "北京"
          }
        }
      ]
    }
  },
  "post_filter": {
    "geo_distance": {
      "distance": "3km",
      "location": {
        "lat": 39.920086,
        "lon": 116.454182
      }
    }
  }
}

上述代码表示,查找地址来有北京,并且在以位置(116.454182, 39.920086)为中心的3公里以内的所有文档。

查询结果:

{
  "took" : 4,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 1,
      "relation" : "eq"
    },
    "max_score" : 0.48232412,
    "hits" : [
      {
        "_index" : "twitter",
        "_type" : "_doc",
        "_id" : "5",
        "_score" : 0.48232412,
        "_source" : {
          "user" : "朝阳区-老王",
          "message" : "Happy BirthDay My Friend!",
          "uid" : 6,
          "age" : 50,
          "city" : "北京",
          "province" : "北京",
          "country" : "中国",
          "address" : "中国北京市朝阳区国贸",
          "location" : {
            "lat" : "39.918256",
            "lon" : "116.467910"
          }
        }
      }
    ]
  }
}

下面,我们找出5公里以内的所有位置信息,并按照远近大小进行排序:

GET twitter/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "address": "北京"
          }
        }
      ]
    }
  },
  "post_filter": {
    "geo_distance": {
      "distance": "5km",
      "location": {
        "lat": 39.920086,
        "lon": 116.454182
      }
    }
  },
  "sort": [
    {
      "_geo_distance": {
        "location": "39.920086,116.454182",
        "order": "asc",
        "unit": "km"
      }
    }
  ]
}

在这里,使用sort来对搜索结果进行排序,按照升序排列:

{
  "took" : 32,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 3,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [
      {
        "_index" : "twitter",
        "_type" : "_doc",
        "_id" : "5",
        "_score" : null,
        "_source" : {
          "user" : "朝阳区-老王",
          "message" : "Happy BirthDay My Friend!",
          "uid" : 6,
          "age" : 50,
          "city" : "北京",
          "province" : "北京",
          "country" : "中国",
          "address" : "中国北京市朝阳区国贸",
          "location" : {
            "lat" : "39.918256",
            "lon" : "116.467910"
          }
        },
        "sort" : [
          1.1882901656104885
        ]
      },
      {
        "_index" : "twitter",
        "_type" : "_doc",
        "_id" : "2",
        "_score" : null,
        "_source" : {
          "user" : "东城区-老刘",
          "message" : "出发,下一站云南!",
          "uid" : 3,
          "age" : 30,
          "city" : "北京",
          "province" : "北京",
          "country" : "中国",
          "address" : "中国北京市东城区台基厂三条3号",
          "location" : {
            "lat" : "39.904313",
            "lon" : "116.412754"
          }
        },
        "sort" : [
          3.9447355972239952
        ]
      },
      {
        "_index" : "twitter",
        "_type" : "_doc",
        "_id" : "3",
        "_score" : null,
        "_source" : {
          "user" : "东城区-李四",
          "message" : "happy birthday!",
          "uid" : 4,
          "age" : 30,
          "city" : "北京",
          "province" : "北京",
          "country" : "中国",
          "address" : "中国北京市东城区",
          "location" : {
            "lat" : "39.893801",
            "lon" : "116.408986"
          }
        },
        "sort" : [
          4.837769064666224
        ]
      }
    ]
  }
}

可以看到有三个显示结果。在sort里面可以看到距离越来越大。另外,如果_score不是sort的field,那么在使用sort后,所有的结果_score都变为null。所有上述的搜索也可以直接写为:

GET twitter/_search
{
  "query": {
    "bool": {
      "must": {
        "match": {
          "address": "北京"
        }
      },
      "filter": {
        "geo_distance": {
          "distance": "5km",
          "location": {
            "lat": 39.920086,
            "lon": 116.454182
          }
        }
      }
    }
  },
  "sort": [
    {
      "_geo_distance": {
        "location": "39.920086,116.454182",
        "order": "asc",
        "unit": "km"
      }
    }
  ]
}

11、范围查询

如查询年龄介于30到40的文档:

GET twitter/_search
{
  "query": {
    "range": {
      "age": {
        "gte": 30,
        "lte": 40
      }
    }
  }
}

同样的也可以进行排序

GET twitter/_search
{
  "query": {
    "range": {
      "age": {
        "gte": 30,
        "lte": 40
      }
    }
  },
  "sort": [
    {
      "age": {
        "order": "desc"
      }
    }
  ]
}

12、Exists查询

我们可以通过exists来查询一个字段是否存在。比如我们可以增加一个文档:

PUT twitter/_doc/20
{
  "user" : "王二",
  "message" : "今儿天气不错啊,出去转转去",
  "uid" : 20,
  "age" : 40,
  "province" : "北京",
  "country" : "中国",
  "address" : "中国北京市海淀区",
  "location" : {
    "lat" : "39.970718",
    "lon" : "116.325747"
  }
}

这个文档中,city这个字段不存在。那么以下搜索将不会返回上面这个文档。

GET twitter/_search
{
  "query": {
    "exists": {
      "field": "city"
    }
  }
}

要查询不含city的这个字段的所有文档,可以这样查询:

GET twitter/_search
{
  "query": {
    "bool": {
      "must_not": {
        "exists": {
          "field": "city"
        }
      }
    }
  }
}

假如创建另外一个索引twitter10:

PUT  twitter10/_doc/1
{
  "locale": null
}

执行查询:

GET twitter10/_search
{
  "query": {
    "exists": {
      "field": "locale"
    }
  }
}

并没有查询到结果。如下所示:

{
  "took" : 0,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 0,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  }
}

如果想要找到一个missing的字段,可以这样:

GET twitter10/_search
{
  "query": {
    "bool": {
      "must_not": [
        {
          "exists": {
            "field": "locale"
          }
        }
      ]
    }
  }
}

返回结果如下:

{
  "took" : 0,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 1,
      "relation" : "eq"
    },
    "max_score" : 0.0,
    "hits" : [
      {
        "_index" : "twitter10",
        "_type" : "_doc",
        "_id" : "1",
        "_score" : 0.0,
        "_source" : {
          "locale" : null
        }
      }
    ]
  }
}

这这是我们想要的结果。

13、匹配短语

可以用如下方法来查找happy birthday。

GET twitter/_search
{
  "query": {
    "match": {
      "message": "happy birthday"
    }
  }
}

默认情况下,这个匹配是"或",也就是找打文档里含有"happy"或"birthday"的文档。如果在增加一个文档:

PUT twitter/_doc/8
{
  "user": "朝阳区-老王",
  "message": "Happy",
  "uid": 6,
  "age": 50,
  "city": "北京",
  "province": "北京",
  "country": "中国",
  "address": "中国北京市朝阳区国贸",
  "location": {
    "lat": "39.918256",
    "lon": "116.467910"
  }
}

重新进行搜索,可以看到新增加的id为8的文档也在搜索之列。

如果想得到"与"的关系,则可以用如下方法:

GET twitter/_search
{
  "query": {
    "match": {
      "message": {
        "query": "happy birthday",
        "operator": "and"
      }
    }
  }
}

这样就搜索不到id为8的文档了。因为必须在message中同时匹配"happy"或"birthday"这两个词。当然还可以用如下方法:

GET twitter/_search
{
  "query": {
    "match": {
      "message": {
        "query": "happy birthday",
        "minimum_should_match": 2
      }
    }
  }
}

在这里,采用了"minimum_should_match"来表示至少有2个匹配才可以。

在搜索结果中,无论文档是大小写字母,都能匹配到,并且在message中,happy birthday这两个词先后顺序也不是很重要。比如我们把id为5的文档改为:

PUT twitter/_doc/5
{
  "user": "朝阳区-老王",
  "message": "BirthDay My Friend Happy !",
  "uid": 6,
  "age": 50,
  "city": "北京",
  "province": "北京",
  "country": "中国",
  "address": "中国北京市朝阳区国贸",
  "location": {
    "lat": "39.918256",
    "lon": "116.467910"
  }
}

有意识的把birthday和happy顺序调换后,再次使用上面”或“和”与“查询,仍然可以搜索到。显然,match查询时不分先后顺序。

如果要固定顺序时,可以使用match_phrase。

GET twitter/_search
{
  "query": {
    "match_phrase": {
      "message": "Happy birthday"
    }
  },
  "highlight": {
    "fields": {
      "message": {}
    }
  }
}

搜索结果中显示 happy 在birthday前面的文档才能被搜索到。

再次把id为5的文档修改为:

PUT twitter/_doc/5
{
  "user": "朝阳区-老王",
  "message": "Happy Good BirthDay My Friend!",
  "uid": 6,
  "age": 50,
  "city": "北京",
  "province": "北京",
  "country": "中国",
  "address": "中国北京市朝阳区国贸",
  "location": {
    "lat": "39.918256",
    "lon": "116.467910"
  }
}

此时用之前的match_phrase是找不到文明的的。此时可以这样:

GET twitter/_search
{
  "query": {
    "match_phrase": {
      "message": {
        "query": "Happy birthday",
        "slop": 1
      }
    }
  },
  "highlight": {
    "fields": {
      "message": {}
    }
  }
}

注意:在这里,我们使用了 slop 为1,表面 Happy 和 birthday 之前是可以允许一个 token 的差别。

14、Name queries

可以使用_name为一个filter或query来获取一个名字。比如:

GET twitter/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "city": {
              "query": "北京",
              "_name": "城市"
            }
          }
        },
        {
          "match": {
            "country": {
              "query": "中国",
              "_name": "国家"
            }
          }
        }
      ],
      "should": [
        {
          "match": {
            "_id": {
              "query": "1",
              "_name": "ID"
            }
          }
        }
      ]
    }
  }
}

返回结果:

{
  "took" : 2,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 6,
      "relation" : "eq"
    },
    "max_score" : 1.4672297,
    "hits" : [
      {
        "_index" : "twitter",
        "_type" : "_doc",
        "_id" : "1",
        "_score" : 1.4672297,
        "_source" : {
          "user" : "双榆树-张三",
          "message" : "今儿天气不错啊,出去转转去",
          "uid" : 2,
          "age" : 20,
          "city" : "北京",
          "province" : "北京",
          "country" : "中国",
          "address" : "中国北京市海淀区",
          "location" : {
            "lat" : "39.970718",
            "lon" : "116.325747"
          }
        },
        "matched_queries" : [
          "国家",
          "ID",
          "城市"
        ]
      },
      {
        "_index" : "twitter",
        "_type" : "_doc",
        "_id" : "2",
        "_score" : 0.46722972,
        "_source" : {
          "user" : "东城区-老刘",
          "message" : "出发,下一站云南!",
          "uid" : 3,
          "age" : 30,
          "city" : "北京",
          "province" : "北京",
          "country" : "中国",
          "address" : "中国北京市东城区台基厂三条3号",
          "location" : {
            "lat" : "39.904313",
            "lon" : "116.412754"
          }
        },
        "matched_queries" : [
          "国家",
          "城市"
        ]
      },
      {
        "_index" : "twitter",
        "_type" : "_doc",
        "_id" : "3",
        "_score" : 0.46722972,
        "_source" : {
          "user" : "东城区-李四",
          "message" : "happy birthday!",
          "uid" : 4,
          "age" : 30,
          "city" : "北京",
          "province" : "北京",
          "country" : "中国",
          "address" : "中国北京市东城区",
          "location" : {
            "lat" : "39.893801",
            "lon" : "116.408986"
          }
        },
        "matched_queries" : [
          "国家",
          "城市"
        ]
      },
      {
        "_index" : "twitter",
        "_type" : "_doc",
        "_id" : "4",
        "_score" : 0.46722972,
        "_source" : {
          "user" : "朝阳区-老贾",
          "message" : "123,gogogo",
          "uid" : 5,
          "age" : 35,
          "city" : "北京",
          "province" : "北京",
          "country" : "中国",
          "address" : "中国北京市朝阳区建国门",
          "location" : {
            "lat" : "39.718256",
            "lon" : "116.367910"
          }
        },
        "matched_queries" : [
          "国家",
          "城市"
        ]
      },
      {
        "_index" : "twitter",
        "_type" : "_doc",
        "_id" : "8",
        "_score" : 0.46722972,
        "_source" : {
          "user" : "朝阳区-老王",
          "message" : "Happy",
          "uid" : 6,
          "age" : 50,
          "city" : "北京",
          "province" : "北京",
          "country" : "中国",
          "address" : "中国北京市朝阳区国贸",
          "location" : {
            "lat" : "39.918256",
            "lon" : "116.467910"
          }
        },
        "matched_queries" : [
          "国家",
          "城市"
        ]
      },
      {
        "_index" : "twitter",
        "_type" : "_doc",
        "_id" : "5",
        "_score" : 0.46722972,
        "_source" : {
          "user" : "朝阳区-老王",
          "message" : "Happy Good BirthDay My Friend!",
          "uid" : 6,
          "age" : 50,
          "city" : "北京",
          "province" : "北京",
          "country" : "中国",
          "address" : "中国北京市朝阳区国贸",
          "location" : {
            "lat" : "39.918256",
            "lon" : "116.467910"
          }
        },
        "matched_queries" : [
          "国家",
          "城市"
        ]
      }
    ]
  }
}

从上面的返回结果可以看出来多了一个叫做 matched_queries 的字段。在它的里面罗列了每个匹配了的查询。第一个返回的查询结果是三个都匹配了的,但是第二个来说就只有两项是匹配的。

15、通配符查询

可以使用wildcard查询一个字符串里含有的字符。

GET twitter/_search
{
  "query": {
    "wildcard": {
      "city.keyword": {
        "value": "*海"
      }
    }
  }
}

上述查询在city字段中含有"海"的文档。所以返回结果中显示了city为"上海"的文档。

16、Disjunction max 查询

返回与一个或多个包在一起的查询(称为查询子句或子句)匹配的文档。

如果返回的文档与多个查询子句匹配,则 dis_max 查询为该文档分配来自任何匹配子句的最高相关性得分,并为任何其他匹配子查询分配平局打破增量。

可以使用 dis_max 在以不同  boost 因子映射的字段中搜索术语。比如:

GET twitter/_search
{
  "query": {
    "dis_max": {
      "queries": [
        {
          "term": {
            "city.keyword": "北京"
          }
        },
        {
          "match": {
            "address": "北京"
          }
        }
      ],
      "tie_breaker": 0.7
    }
  }
}

在上面的 dis_max 查询中,它将返回任何一个在 queries 中所定的查询的文档。每个匹配分分数是按照如下的规则来进行计算的:

  • 如果一个文档匹配其中的一个或多个查询,那么最终的得分将以其中最高的那个得分来进行计算。
  • 在默认的情况下,tie_breaker 的值为0。它可以是 0 到 1.0 之间的数。

如果文档匹配多个子句,则 dis_max 查询将计算该文档的相关性得分,如下所示:

  • 从具有最高分数的匹配子句中获取相关性分数。
  • 将来自其他任何匹配子句的得分乘以 tie_breaker 值。
  • 将最高分数加到相乘的分数上。

如果 tie_breaker 值大于0.0,则所有匹配子句均计数,但得分最高的子句计数最高。

17、SQL查询

对于与很多已经习惯用 RDMS 数据库的工作人员,他们更喜欢使用 SQL 来进行查询。Elasticsearch 也对 SQL 有支持:

GET /_sql?
{
  "query": """
    SELECT * FROM twitter 
    WHERE age = 30
  """
}

得到的结果是:

{
  "columns" : [
    {
      "name" : "address",
      "type" : "text"
    },
    {
      "name" : "age",
      "type" : "long"
    },
    {
      "name" : "city",
      "type" : "text"
    },
    {
      "name" : "country",
      "type" : "text"
    },
    {
      "name" : "location",
      "type" : "geo_point"
    },
    {
      "name" : "message",
      "type" : "text"
    },
    {
      "name" : "province",
      "type" : "text"
    },
    {
      "name" : "uid",
      "type" : "long"
    },
    {
      "name" : "user",
      "type" : "text"
    }
  ],
  "rows" : [
    [
      "中国北京市东城区台基厂三条3号",
      30,
      "北京",
      "中国",
      "point (116.41275395639241 39.90431299433112)",
      "出发,下一站云南!",
      "北京",
      3,
      "东城区-老刘"
    ],
    [
      "中国北京市东城区",
      30,
      "北京",
      "中国",
      "point (116.40898595564067 39.8938009981066)",
      "happy birthday!",
      "北京",
      4,
      "东城区-李四"
    ]
  ]
}

可以通过如下方法得到对于的DSL语句:

GET /_sql/translate
{
  "query": """
    SELECT * FROM twitter 
    WHERE age = 30
  """
}

结果:

{
  "size" : 1000,
  "query" : {
    "term" : {
      "age" : {
        "value" : 30,
        "boost" : 1.0
      }
    }
  },
  "_source" : {
    "includes" : [
      "address",
      "city",
      "country",
      "message",
      "province",
      "user"
    ],
    "excludes" : [ ]
  },
  "docvalue_fields" : [
    {
      "field" : "age"
    },
    {
      "field" : "location"
    },
    {
      "field" : "uid"
    }
  ],
  "sort" : [
    {
      "_doc" : {
        "order" : "asc"
      }
    }
  ]
}

18、Multi Search API

使用单个 API 请求执行几次搜索。这个 API 的好处是节省 API 的请求个数,把多个请求放到一个 API 请求中来实现。
为了说明问题的方便,我们可以多加一个叫做 twitter1 的 index。它的内容如下:

POST _bulk
{"index":{"_index":"twitter1","_id":1}}
{"user":"张庆","message":"今儿天气不错啊,出去转转去","uid":2,"age":20,"city":"重庆","province":"重庆","country":"中国","address":"中国重庆地区","location":{"lat":"39.970718","lon":"116.325747"}}

这样在我们的 Elasticsearch 中就有两个索引了。我们可以做如下的 _msearch。

GET twitter/_msearch
{"index":"twitter"}
{"query":{"match_all":{}},"from":0,"size":1}
{"index":"twitter"}
{"query":{"bool":{"filter":{"term":{"city.keyword":"北京"}}}}, "size":1}
{"index":"twitter1"}
{"query":{"match_all":{}}}

通过 _msearch 终点来实现在一个 API 请求中做多个查询,对多个 index 进行同时操作。显示结果为:

{
  "took" : 18,
  "responses" : [
    {
      "took" : 0,
      "timed_out" : false,
      "_shards" : {
        "total" : 1,
        "successful" : 1,
        "skipped" : 0,
        "failed" : 0
      },
      "hits" : {
        "total" : {
          "value" : 8,
          "relation" : "eq"
        },
        "max_score" : 1.0,
        "hits" : [
          {
            "_index" : "twitter",
            "_type" : "_doc",
            "_id" : "1",
            "_score" : 1.0,
            "_source" : {
              "user" : "双榆树-张三",
              "message" : "今儿天气不错啊,出去转转去",
              "uid" : 2,
              "age" : 20,
              "city" : "北京",
              "province" : "北京",
              "country" : "中国",
              "address" : "中国北京市海淀区",
              "location" : {
                "lat" : "39.970718",
                "lon" : "116.325747"
              }
            }
          }
        ]
      },
      "status" : 200
    },
    {
      "took" : 0,
      "timed_out" : false,
      "_shards" : {
        "total" : 1,
        "successful" : 1,
        "skipped" : 0,
        "failed" : 0
      },
      "hits" : {
        "total" : {
          "value" : 6,
          "relation" : "eq"
        },
        "max_score" : 0.0,
        "hits" : [
          {
            "_index" : "twitter",
            "_type" : "_doc",
            "_id" : "1",
            "_score" : 0.0,
            "_source" : {
              "user" : "双榆树-张三",
              "message" : "今儿天气不错啊,出去转转去",
              "uid" : 2,
              "age" : 20,
              "city" : "北京",
              "province" : "北京",
              "country" : "中国",
              "address" : "中国北京市海淀区",
              "location" : {
                "lat" : "39.970718",
                "lon" : "116.325747"
              }
            }
          }
        ]
      },
      "status" : 200
    },
    {
      "took" : 0,
      "timed_out" : false,
      "_shards" : {
        "total" : 1,
        "successful" : 1,
        "skipped" : 0,
        "failed" : 0
      },
      "hits" : {
        "total" : {
          "value" : 1,
          "relation" : "eq"
        },
        "max_score" : 1.0,
        "hits" : [
          {
            "_index" : "twitter1",
            "_type" : "_doc",
            "_id" : "1",
            "_score" : 1.0,
            "_source" : {
              "user" : "张庆",
              "message" : "今儿天气不错啊,出去转转去",
              "uid" : 2,
              "age" : 20,
              "city" : "重庆",
              "province" : "重庆",
              "country" : "中国",
              "address" : "中国重庆地区",
              "location" : {
                "lat" : "39.970718",
                "lon" : "116.325747"
              }
            }
          }
        ]
      },
      "status" : 200
    }
  ]
}

19、多个索引操作

在上面我们引入了另外一个索引 twitter1。在实际的操作中,我们可以通过通配符,或者直接使用多个索引来进行搜索:

GET twitter*/_search

上面的操作是对所有的以 twitter 为开头的索引来进行搜索,显示的结果是在所有的 twitter 及 twitter1 中的文档。

同样也可以写成:

GET /twitter,twitter1/_search

在写上面的查询的时候,在两个索引之间不能加入空格。

20、Profile API

rofile API 是调试工具。 它添加了有关执行的详细信息搜索请求中的每个组件。 它为用户提供有关搜索的每个步骤的洞察力。请求执行并可以帮助确定某些请求为何缓慢。

GET twitter/_search
{
  "profile": "true", 
  "query": {
    "match": {
      "city": "北京"
    }
  }
}

在上面,我们加上了 "profile":"true" 后,除了显示搜索的结果之外,还显示 profile 的信息:

"profile" : {
    "shards" : [
      {
        "id" : "[qjdrmbcpS7aSUxbTtR4mTg][twitter][0]",
        "searches" : [
          {
            "query" : [
              {
                "type" : "BooleanQuery",
                "description" : "city:北 city:京",
                "time_in_nanos" : 4260236,
                "breakdown" : {
                  "set_min_competitive_score_count" : 0,
                  "match_count" : 6,
                  "shallow_advance_count" : 0,
                  "set_min_competitive_score" : 0,
                  "next_doc" : 83628,
                  "match" : 12840,
                  "next_doc_count" : 7,
                  "score_count" : 6,
                  "compute_max_score_count" : 0,
                  "compute_max_score" : 0,
                  "advance" : 178844,
                  "advance_count" : 3,
                  "score" : 48384,
                  "build_scorer_count" : 7,
                  "create_weight" : 1113902,
                  "shallow_advance" : 0,
                  "create_weight_count" : 1,
                  "build_scorer" : 2822608
                },
                "children" : [
                  {
                    "type" : "TermQuery",
                    "description" : "city:北",
                    "time_in_nanos" : 293348,
                    "breakdown" : {
                      "set_min_competitive_score_count" : 0,
                      "match_count" : 0,
                      "shallow_advance_count" : 9,
                      "set_min_competitive_score" : 0,
                      "next_doc" : 0,
                      "match" : 0,
                      "next_doc_count" : 0,
                      "score_count" : 6,
                      "compute_max_score_count" : 9,
                      "compute_max_score" : 61365,
                      "advance" : 12242,
                      "advance_count" : 10,
                      "score" : 11943,
                      "build_scorer_count" : 10,
                      "create_weight" : 52244,
                      "shallow_advance" : 39245,
                      "create_weight_count" : 1,
                      "build_scorer" : 116264
                    }
                  },
                  {
                    "type" : "TermQuery",
                    "description" : "city:京",
                    "time_in_nanos" : 122102,
                    "breakdown" : {
                      "set_min_competitive_score_count" : 0,
                      "match_count" : 0,
                      "shallow_advance_count" : 9,
                      "set_min_competitive_score" : 0,
                      "next_doc" : 0,
                      "match" : 0,
                      "next_doc_count" : 0,
                      "score_count" : 6,
                      "compute_max_score_count" : 9,
                      "compute_max_score" : 18830,
                      "advance" : 17598,
                      "advance_count" : 10,
                      "score" : 6348,
                      "build_scorer_count" : 10,
                      "create_weight" : 33689,
                      "shallow_advance" : 9560,
                      "create_weight_count" : 1,
                      "build_scorer" : 36032
                    }
                  }
                ]
              }
            ],
            "rewrite_time" : 34800,
            "collector" : [
              {
                "name" : "CancellableCollector",
                "reason" : "search_cancelled",
                "time_in_nanos" : 596185,
                "children" : [
                  {
                    "name" : "SimpleTopScoreDocCollector",
                    "reason" : "search_top_hits",
                    "time_in_nanos" : 77604
                  }
                ]
              }
            ]
          }
        ],
        "aggregations" : [ ]
      }
    ]
  }

从上面可以看出,这个搜索是搜索了“北”及“京”,而不是把北京作为一个整体来进行搜索的。我们可以在以后的文档中可以学习使用中文分词器来进行分词搜索。

除了上面的通过命令来进行 profile 以外,我们也可以通过 Kibana 的 UI 对我们的搜索进行 profile:

 

https://blog.csdn.net/UbuntuTouch/article/details/99546568

posted @ 2021-05-08 15:37  钟齐峰  阅读(622)  评论(0编辑  收藏  举报