Loading

[LeetCode] 98. Validate Binary Search Tree(验证二叉搜索树)

Description

Given the root of a binary tree, determine if it is a valid binary search tree (BST).
给定二叉树的根 root,判断其是否为合法的二叉搜索树(BST)。

valid BST is defined as follows:
一颗合法的 BST 满足以下条件:

  • The left subtree of a node contains only nodes with keys less than the node's key.
    任意节点的左子树的节点值均小于该节点。
  • The right subtree of a node contains only nodes with keys greater than the node's key.
    任意节点的右子树的节点值均大于该节点。
  • Both the left and right subtrees must also be binary search trees.
    任意节点的左右子树也必须是 BST。

Examples

Example 1

Input: root = [2,1,3]
Output: true

Example 2

Input: root = [5,1,4,null,null,3,6]
Output: false
Explanation: The root node's value is 5 but its right child's value is 4.

Constraints

  • The number of nodes in the tree is in the range [1, 1e4].
  • -2^31 <= Node.val <= 2^31 - 1

Solution

本来想着利用题目给的二叉树的递归定义解题,然后以此思路写的代码全部 WA,于是先用以下暴力方法先过了,意外地效果还可以。代码如下:

class Solution {
    private val list = arrayListOf<Int>()

    fun isValidBST(root: TreeNode?): Boolean {
        list.clear()
        inOrder(root)

        return list.isSorted()
    }

    private fun inOrder(root: TreeNode?) {
        if (root != null) {
            inOrder(root.left)
            list.add(root.`val`)
            inOrder(root.right)
        }
    }

    private fun List<Int>.isSorted(): Boolean {
        if (this.size < 2) {
            return true
        }

        for (i in 0 until this.lastIndex) {
            if (this[i] >= this[i + 1]) {
                return false
            }
        }
        return true
    }
}

那么这题真正的递归解法长啥样?我在 discussion 里找到了一个刷新我的三观的解法,其主要思路用一句话概括就是:遍历树的同时,维护一个区间 minVal, maxVal,节点值必须在该区间范围内。代码如下:

class Solution {
    fun isValidBST(root: TreeNode?): Boolean {
        return isValidBst(root, Long.MIN_VALUE, Long.MAX_VALUE)
    }

    private fun isValidBst(root: TreeNode?, minVal: Long, maxVal: Long): Boolean {
        if (root == null) {
            return true
        }
        if (root.`val` >= maxVal || root.`val` <= minVal) {
            return false
        }
        return isValidBst(root.left, minVal, root.`val`.toLong()) &&
                isValidBst(root.right, root.`val`.toLong(), maxVal)
    }
}
posted @ 2020-12-15 09:44  Zhongju.copy()  阅读(93)  评论(0编辑  收藏  举报