[LeetCode] 207. Course Schedule(课程表)
-
Difficulty: Medium
-
Related Topics: Depth-first Search, Breadth-first Search, Graph, Topological Sort
Description
There are a total of numCourses
courses you have to take, labeled from 0
to numCourses-1
.
你需要上 numCourses
门课程,每门课程分别从 0
标记为 numCourses-1
。
Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]
一些课程有前置要求,例如要上课程 0,你就需要先完成课程 1 的学习,在题目中使用像 [0,1]
这样的对表示。
Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?
给定需要学习的课程总数和一个前置课程列表,判断是否有可能完成所有课程?
Examples
Example 1
Input: numCourses = 2, prerequisites = [[1,0]]
Output: true
Explanation: There are a total of 2 courses to take.
To take course 1 you should have finished course 0. So it is possible.
Example 2
Input: numCourses = 2, prerequisites = [[1,0],[0,1]]
Output: false
Explanation: There are a total of 2 courses to take.
To take course 1 you should have finished course 0, and to take course 0 you should
also have finished course 1. So it is impossible.
Constraints
- The input prerequisites is a graph represented by a list of edges, not adjacency matrices. Read more about how a graph is represented.
输入的前置课程列表由边列表表示,而非邻接矩阵。欲了解更多图的表示形式,请点击此处。 - You may assume that there are no duplicate edges in the input prerequisites.
你可以假定输入中没有重复的边。 1 <= numCourses <= 10^5
Hints
-
This problem is equivalent to finding if a cycle exists in a directed graph. If a cycle exists, no topological ordering exists and therefore it will be impossible to take all courses.
-
Topological Sort via DFS - A great video tutorial (21 minutes) on Coursera explaining the basic concepts of Topological Sort.
-
Topological sort could also be done via BFS.
Solution
本题是拓扑排序的一个经典应用了,这里使用的是一个容易理解的拓扑排序的方法:
-
取出一个入度为 0 的节点,删除该节点及该节点的所有出边
-
重复 1,直到找不到入度为 0 的节点为止
-
如果最后图空了,则刚才的遍历顺序为其中一种拓扑排序,否则图中一定存在环路。
具体代码如下(附带详细的注释)
import java.util.*
class Solution {
fun canFinish(numCourses: Int, prerequisites: Array<IntArray>): Boolean {
// 邻接矩阵
val matrix = Array(numCourses) { IntArray(numCourses) }
// 入度值
val inDegree = IntArray(numCourses)
prerequisites.forEach {
val (ready, pre) = it
if (matrix[pre][ready] == 0) {
inDegree[ready]++
}
matrix[pre][ready] = 1
}
// 构建初始队列,把入度为 0 的节点入队
val queue: Queue<Int> = ArrayDeque()
for (i in inDegree.indices) {
if (inDegree[i] == 0) {
queue.offer(i)
}
}
// 利用拓扑排序的思想遍历图
// 具体做法是:找一个入度为 0 的节点,删掉该节点(出队)以及该节点的出边(对应节点的入度 -1)
// 如果出现新的入度为 0 的节点,加入队列
// 循环往复,直到队列空了
var count = 0
while (queue.isNotEmpty()) {
val course = queue.poll()
count++
for (i in 0 until numCourses) {
if (matrix[course][i] != 0) {
inDegree[i]--
if (inDegree[i] == 0) {
queue.offer(i)
}
}
}
}
// 最后看遍历到的节点总数和课程总数能不能对得上
return count == numCourses
}
}