[LeetCode] 230. Kth Smallest Element in a BST(二叉搜索树里的第 k 小元素)
-
Difficulty: Medium
-
Related Topics: Binary Search, Tree
-
Link: https://leetcode.com/problems/kth-smallest-element-in-a-bst/
Description
Given a binary search tree, write a function kthSmallest
to find the kth smallest element in it.
给一棵二叉搜索树,写一个函数 kthSmallest
找出其中第 k 小的元素。
Examples
Example 1
Input: root = [3,1,4,null,2], k = 1
3
/ \
1 4
\
2
Output: 1
Example 2
Input: root = [5,3,6,2,4,null,null,1], k = 3
5
/ \
3 6
/ \
2 4
/
1
Output: 3
Follow up
What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kthSmallest routine?
如果二叉搜索树经常被修改(插入/删除节点)并且你又需要经常查询第 k 小元素呢?你该怎样优化你的代码?
Constraints
-
The number of elements of the BST is between
1
to10^4
.
二叉搜索树的节点范围在1
到10^4
之间。 -
You may assume
k
is always valid,1 ≤ k ≤ BST's total elements
.
你可以假设k
总是有效的,1 ≤ k ≤ 二叉搜索树的节点数量
。
Hints
-
Try to utilize the property of a BST.
尝试利用二叉搜索树的性质。 -
Try in-order traversal. (Credits to @chan13)
尝试中序遍历。 -
What if you could modify the BST node's structure?
如果你能修改二叉搜索树节点的结构呢? -
The optimal runtime complexity is O(height of BST).
更优的时间复杂度是 O(二叉搜索树的高度)。
Solution
由于对二叉树进行中序遍历即可得到有序数组,所以可以利用中序遍历来寻找第 k 小的元素,时间复杂度 \(O(N)\),代码如下:
/**
* Example:
* var ti = TreeNode(5)
* var v = ti.`val`
* Definition for a binary tree node.
* class TreeNode(var `val`: Int) {
* var left: TreeNode? = null
* var right: TreeNode? = null
* }
*/
class Solution {
private var index = 0
private var result = -1
fun kthSmallest(root: TreeNode?, k: Int): Int {
inOrder(root, k)
return result
}
private fun inOrder(root: TreeNode?, k: Int) {
if (index >= k && result != -1) {
return
}
if (root != null) {
inOrder(root.left, k)
index++
if (index == k) {
result = root.`val`
return
}
inOrder(root.right, k)
}
}
}
既然二叉搜索树有这种性质,为什么不能用二分搜索呢?翻了一下 Discussion,确实有这样的解法,代码如下:
/**
* Example:
* var ti = TreeNode(5)
* var v = ti.`val`
* Definition for a binary tree node.
* class TreeNode(var `val`: Int) {
* var left: TreeNode? = null
* var right: TreeNode? = null
* }
*/
class Solution {
fun kthSmallest(root: TreeNode?, k: Int): Int {
val leftNodes = nodeCount(root?.left)
return when {
k <= leftNodes -> kthSmallest(root?.left, k)
k > leftNodes + 1 -> kthSmallest(root?.right, k - 1 - leftNodes)
else -> root!!.`val`
}
}
private fun nodeCount(root: TreeNode?): Int = if (root == null) {
0
} else {
1 + nodeCount(root.left) + nodeCount(root.right)
}
}
不过这样算节点的数量也是要消耗额外时间的,所以需要将其存储起来,这也就是提示 3 里的内容。
官方给出的 Solution 则是利用栈这一结构,将递归查找变成了迭代,代码如下(虽然我看不出这有啥优势):
/**
* Example:
* var ti = TreeNode(5)
* var v = ti.`val`
* Definition for a binary tree node.
* class TreeNode(var `val`: Int) {
* var left: TreeNode? = null
* var right: TreeNode? = null
* }
*/
class Solution {
fun kthSmallest(root: TreeNode?, k: Int): Int {
val stack = ArrayDeque<TreeNode>()
var p = root
var count = k
while (true) {
while (p != null) {
stack.push(p)
p = p.left
}
p = stack.pop()
if (--count == 0) {
return p.`val`
}
p = p.right
}
}
}