论文笔记——Channel Pruning for Accelerating Very Deep Neural Networks
采用方法
这篇文章主要讲诉了采用裁剪信道(channel pruning)的方法实现深度网络的加速。主要方法有两点:
(1)LASSO regression based channel selection. (2)least square reconstruction.
实现效果
VGG-16实现5x的加速,0.3%误差增加(深度卷积网络,13个CNN)
ResNet实现2x加速,1.4%误差增加(残差网络)
Xception实现2x加速,1.0%误差增加(残差网络)
本文还结合了spatial, channel factorization and channel pruning三种方法实现更好的效果。
网络大小压缩没有说。
CNN加速方法
- optimized implementation(e.g. FFT) 就是实现更快的计算方法
- quantization(e.g. BinaryNet) 就是将网络中的浮点数二值化
- structed simplification 就是将网络结果变简单
structed simplification 方法
- tensor factorization 就是将矩阵分解
- sparse connection 就是让网络连接变得稀疏
- channel pruning 信道裁剪
channel pruning 方法
- first k selects the first k channels. 这种方法太简单粗暴了。
- max response 也就是选择权值和最大的信道,认为拥有的信息最多。