LeetCode——Unique Paths
Question
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Note: m and n will be at most 100.
Solution 1
动态规划,到(i, j)的所有方法等于到(i - 1, j)加上(i, j - 1)。
class Solution {
public:
int uniquePaths(int m, int n) {
vector<vector<int> > table(m, vector<int> (n, 1));
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
table[i][j] = table[i - 1][j] + table[i][j - 1];
}
}
return table[m - 1][n - 1];
}
};
Solution 2
组合数学中的格路问题,注意要边乘边除,不然要越界。
class Solution {
public:
int uniquePaths(int m, int n) {
int N = n + m - 2;// how much steps we need to do
int k = m - 1; // number of steps that need to go down
double res = 1;
// here we calculate the total possible path number
// Combination(N, k) = n! / (k!(n - k)!)
// reduce the numerator and denominator and get
// C = ( (n - k + 1) * (n - k + 2) * ... * n ) / k!
for (int i = 1; i <= k; i++)
res = res * (N - k + i) / i;
return (int)res;
}
};