python中的缓存技术
python缓存技术
def console(a,b):
print('进入函数')
return (a,b)
print(console(3,'a'))
print(console(2,'b'))
print(console(3.0,'a'))
#输出结果
进入函数
(3, 'a')
进入函数
(2, 'b')
进入函数
(3.0, 'a')
接下来我们引入functools模块的lru_cache,python3自带模块。
from functools import lru_cache
@lru_cache()
def console2(a, b):
print("进入函数")
return (a, b)
print(console2(3, 'a'))
print(console2(2, 'b'))
print(console2(3.0, 'a'))
#输出结果
进入函数
(3, 'a')
进入函数
(2, 'b')
(3, 'a')
很明显,输出结果少了一行,这是为什么呢?
什么是LRU
LRU (Least Recently Used) 是缓存置换策略中的一种常用的算法。当缓存队列已满时,新的元素加入队列时,需要从现有队列中移除一个元素,LRU 策略就是将最近最少被访问的元素移除,从而腾出空间给新的元素。
python中的实现
python3中的functools模块的lru_cache实现了这个功能,
lru_cache装饰器会记录以往函数运行的结果,实现了备忘
(memoization)功能,避免参数重复时反复调用,达到提高性能的作用,在递归函数中作用特别明显。这是一项优化技术,它把耗时的函数的结果保存起来,避免传入相同的参数时重复计算。
带参数的lru_cache
使用方法lru_cache(maxsize=128, typed=False)
maxsize可以缓存最多个此函数的调用结果,从而提高程序执行的效率,特别适合于耗时的函数。
参数maxsize为最多缓存的次数,如果为None,则无限制,设置为2的n次幂时,性能最佳;
如果 typed=True,则不同参数类型的调用将分别缓存,例如 f(3) 和 f(3.0),默认False
来一段综合代码:
from functools import lru_cache
def console1(a, b):
print("进入函数")
return (a, b)
@lru_cache()
def console2(a, b):
print("进入函数")
return (a, b)
@lru_cache(maxsize=256, typed=True)
def console3(a, b):
'''
:param a:
:param b:
:return:
'''
print("进入函数")
return (a, b)
print(console1(3, 'a'))
print(console1(2, 'b'))
print(console1(3.0, 'a'))
print("*" * 40)
print(console2(3, 'a'))
print(console2(2, 'b'))
print(console2(3.0, 'a'))
print("*" * 40)
print(console3(3, 'a'))
print(console3(2, 'b'))
print(console3(3.0, 'a'))
#输出结果为
进入函数
(3, 'a')
进入函数
(2, 'b')
进入函数
(3.0, 'a')
****************************************
进入函数
(3, 'a')
进入函数
(2, 'b')
(3, 'a')
****************************************
进入函数
(3, 'a')
进入函数
(2, 'b')
进入函数
(3.0, 'a')
同样的可以用到爬虫的去重操作上,避免网页的重复请求。
在后期存储的时候做判断即可。
from functools import lru_cache
from requests_html import HTMLSession
session=HTMLSession()
@lru_cache()
def get_html(url):
req=session.get(url)
print(url)
return req
urllist=["https://www.baidu.com","https://pypi.org/project/pylru/1.0.9/","https://www.baidu.com"]
if __name__ == '__main__':
for i in urllist:
print(get_html(i))
输出结果:
https://www.baidu.com
<Response [200]>
https://pypi.org/project/pylru/1.0.9/
<Response [200]>
<Response [200]>
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】博客园社区专享云产品让利特惠,阿里云新客6.5折上折
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· DeepSeek 解答了困扰我五年的技术问题
· 为什么说在企业级应用开发中,后端往往是效率杀手?
· 用 C# 插值字符串处理器写一个 sscanf
· Java 中堆内存和栈内存上的数据分布和特点
· 开发中对象命名的一点思考
· 为什么说在企业级应用开发中,后端往往是效率杀手?
· DeepSeek 解答了困扰我五年的技术问题。时代确实变了!
· 本地部署DeepSeek后,没有好看的交互界面怎么行!
· 趁着过年的时候手搓了一个低代码框架
· 推荐一个DeepSeek 大模型的免费 API 项目!兼容OpenAI接口!