实验三 朴素贝叶斯算法及应用

| 作业要求 | 作业要求|
| 作业目标 | 作业目标 |
| 姓名 | 张海龙 |
| 学号 | 3180701120 |

一、实验目的
1.理解朴素贝叶斯算法原理,掌握朴素贝叶斯算法框架;
2.掌握常见的高斯模型,多项式模型和伯努利模型;
3.能根据不同的数据类型,选择不同的概率模型实现朴素贝叶斯算法;
4.针对特定应用场景及数据,能应用朴素贝叶斯解决实际问题。

二、实验内容
1.实现高斯朴素贝叶斯算法。
2.熟悉sklearn库中的朴素贝叶斯算法;
3.针对iris数据集,应用sklearn的朴素贝叶斯算法进行类别预测。
4.针对iris数据集,利用自编朴素贝叶斯算法进行类别预测。

三、实验报告要求
1.对照实验内容,撰写实验过程、算法及测试结果;
2.代码规范化:命名规则、注释;
3.分析核心算法的复杂度;
4.查阅文献,讨论各种朴素贝叶斯算法的应用场景;
5.讨论朴素贝叶斯算法的优缺点。

四、实验过程
1、
import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from collections import Counter import math

2、
# data def create_data(): iris = load_iris() df = pd.DataFrame(iris.data, columns=iris.feature_names) df['label'] = iris.target df.columns = [ 'sepal length', 'sepal width', 'petal length', 'petal width', 'label' ] data = np.array(df.iloc[:100, :]) # print(data) return data[:, :-1], data[:, -1]

3、
X, y = create_data() X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)

4、
X_test[0], y_test[0]

5、class NaiveBayes: def __init__(self): self.model = None # 数学期望 @staticmethod def mean(X): return sum(X) / float(len(X)) # 标准差(方差) def stdev(self, X): avg = self.mean(X) return math.sqrt(sum([pow(x - avg, 2) for x in X]) / float(len(X))) # 概率密度函数 def gaussian_probability(self, x, mean, stdev): exponent = math.exp(-(math.pow(x - mean, 2) / (2 * math.pow(stdev, 2)))) return (1 / (math.sqrt(2 * math.pi) * stdev)) * exponent # 处理X_train def summarize(self, train_data): summaries = [(self.mean(i), self.stdev(i)) for i in zip(*train_data)] return summaries # 分类别求出数学期望和标准差 def fit(self, X, y): labels = list(set(y)) data = {label: [] for label in labels} for f, label in zip(X, y): data[label].append(f) self.model = { label: self.summarize(value) for label, value in data.items() } return 'gaussianNB train done!' # 计算概率 def calculate_probabilities(self, input_data): # summaries:{0.0: [(5.0, 0.37),(3.42, 0.40)], 1.0: [(5.8, 0.449),(2.7, 0.27)]} # input_data:[1.1, 2.2] probabilities = {} for label, value in self.model.items(): probabilities[label] = 1 for i in range(len(value)): mean, stdev = value[i] probabilities[label] *= self.gaussian_probability( input_data[i], mean, stdev) return probabilities # 类别 def predict(self, X_test): # {0.0: 2.9680340789325763e-27, 1.0: 3.5749783019849535e-26} label = sorted( self.calculate_probabilities(X_test).items(), key=lambda x: x[-1])[-1][0] return label def score(self, X_test, y_test): right = 0 for X, y in zip(X_test, y_test): label = self.predict(X) if label == y: right += 1 return right / float(len(X_test))

6、
model = NaiveBayes()

7、
model.fit(X_train, y_train)
实验结果

8、
print(model.predict([4.4, 3.2, 1.3, 0.2]))
实验结果
0.0

9、
model.score(X_test, y_test)
实验结果
【out10]:1.0

10、
from sklearn.naive_bayes import GaussianNB

11、
clf = GaussianNB() clf.fit(X_train, y_train)

12、
clf.score(X_test, y_test)

13、
clf.predict([[4.4, 3.2, 1.3, 0.2]])

14、
from sklearn.naive_bayes import BernoulliNB, MultinomialNB # 伯努利模型和多项式模型

五、实验小结
通过本次实验,我对课本有关朴素贝叶斯算法的原理有了更近一步的掌握,对于朴素贝叶斯来说,它具有一个较强的假设即特征条件独立,这使得它条件概率的计算量大大减少。同时,我也学会了使用常见的高斯模型,多项式模型和伯努利模型去实现朴素贝叶斯算法。虽然朴素贝叶斯使用了过于简化的假设,这个分类器在许多实际情况中都运行良好,著名的是文档分类和垃圾邮件过滤。

posted @ 2021-06-29 17:44  leeer  阅读(131)  评论(0编辑  收藏  举报