无人驾驶—感知基础

静态环境感知与分割算法

实战基于传统方法的车道线检测

import cv2 as cv
import numpy as np
# import matplotlib.pyplot as plt

def do_canny(frame):
    # Converts frame to grayscale because we only need the luminance channel for detecting edges - less computationally expensive
    gray = cv.cvtColor(frame, cv.COLOR_RGB2GRAY)
    # Applies a 5x5 gaussian blur with deviation of 0 to frame - not mandatory since Canny will do this for us
    blur = cv.GaussianBlur(gray, (5, 5), 0)
    # Applies Canny edge detector with minVal of 50 and maxVal of 150
    canny = cv.Canny(blur, 50, 150)
    return canny

def do_segment(frame):
    # Since an image is a multi-directional array containing the relative intensities of each pixel in the image, we can use frame.shape to return a tuple: [number of rows, number of columns, number of channels] of the dimensions of the frame
    # frame.shape[0] give us the number of rows of pixels the frame has. Since height begins from 0 at the top, the y-coordinate of the bottom of the frame is its height
    height = frame.shape[0]
    # Creates a triangular polygon for the mask defined by three (x, y) coordinates
    polygons = np.array([
                            [(0, height), (800, height), (380, 290)]
                        ])
    # Creates an image filled with zero intensities with the same dimensions as the frame
    mask = np.zeros_like(frame)
    # Allows the mask to be filled with values of 1 and the other areas to be filled with values of 0
    cv.fillPoly(mask, polygons, 255)
    # A bitwise and operation between the mask and frame keeps only the triangular area of the frame
    segment = cv.bitwise_and(frame, mask)
    return segment

def calculate_lines(frame, lines):
    # Empty arrays to store the coordinates of the left and right lines
    left = []
    right = []
    # Loops through every detected line
    for line in lines:
        # Reshapes line from 2D array to 1D array
        x1, y1, x2, y2 = line.reshape(4)
        # Fits a linear polynomial to the x and y coordinates and returns a vector of coefficients which describe the slope and y-intercept
        parameters = np.polyfit((x1, x2), (y1, y2), 1)
        slope = parameters[0]
        y_intercept = parameters[1]
        # If slope is negative, the line is to the left of the lane, and otherwise, the line is to the right of the lane
        if slope < 0:
            left.append((slope, y_intercept))
        else:
            right.append((slope, y_intercept))
    # Averages out all the values for left and right into a single slope and y-intercept value for each line
    left_avg = np.average(left, axis = 0)
    right_avg = np.average(right, axis = 0)
    # Calculates the x1, y1, x2, y2 coordinates for the left and right lines
    left_line = calculate_coordinates(frame, left_avg)
    right_line = calculate_coordinates(frame, right_avg)
    return np.array([left_line, right_line])

def calculate_coordinates(frame, parameters):
    slope, intercept = parameters
    # Sets initial y-coordinate as height from top down (bottom of the frame)
    y1 = frame.shape[0]
    # Sets final y-coordinate as 150 above the bottom of the frame
    y2 = int(y1 - 150)
    # Sets initial x-coordinate as (y1 - b) / m since y1 = mx1 + b
    x1 = int((y1 - intercept) / slope)
    # Sets final x-coordinate as (y2 - b) / m since y2 = mx2 + b
    x2 = int((y2 - intercept) / slope)
    return np.array([x1, y1, x2, y2])

def visualize_lines(frame, lines):
    # Creates an image filled with zero intensities with the same dimensions as the frame
    lines_visualize = np.zeros_like(frame)
    # Checks if any lines are detected
    if lines is not None:
        for x1, y1, x2, y2 in lines:
            # Draws lines between two coordinates with green color and 5 thickness
            cv.line(lines_visualize, (x1, y1), (x2, y2), (0, 255, 0), 5)
    return lines_visualize

# The video feed is read in as a VideoCapture object
cap = cv.VideoCapture("input.mp4")
while (cap.isOpened()):
    # ret = a boolean return value from getting the frame, frame = the current frame being projected in the video
    ret, frame = cap.read()
    canny = do_canny(frame)
    cv.imshow("canny", canny)
    # plt.imshow(frame)
    # plt.show()
    segment = do_segment(canny)
    hough = cv.HoughLinesP(segment, 2, np.pi / 180, 100, np.array([]), minLineLength = 100, maxLineGap = 50)
    # Averages multiple detected lines from hough into one line for left border of lane and one line for right border of lane
    lines = calculate_lines(frame, hough)
    # Visualizes the lines
    lines_visualize = visualize_lines(frame, lines)
    cv.imshow("hough", lines_visualize)
    # Overlays lines on frame by taking their weighted sums and adding an arbitrary scalar value of 1 as the gamma argument
    output = cv.addWeighted(frame, 0.9, lines_visualize, 1, 1)
    # Opens a new window and displays the output frame
    cv.imshow("output", output)
    # Frames are read by intervals of 10 milliseconds. The programs breaks out of the while loop when the user presses the 'q' key
    if cv.waitKey(10) & 0xFF == ord('q'):
        break
# The following frees up resources and closes all windows
cap.release()
cv.destroyAllWindows()

基于深度学习的图片分割算法综述

 

实战基于图片分割的车道线检测

posted @ 2021-04-20 22:18  北极星!  阅读(178)  评论(0编辑  收藏  举报