时间复杂度和空间复杂度

一、时间复杂度

举例练习

二、空间复杂度

既然时间复杂度不是用来计算程序具体耗时的,那么我也应该明白,空间复杂度也不是用来计算程序实际占用的空间的。

空间复杂度是对一个算法在运行过程中临时占用存储空间大小的一个量度,同样反映的是一个趋势,我们用 S(n) 来定义。

计算空间复杂度:看储存单元随n如何变化,如果随n的变化存储空间不变时,空间复杂度为O(1)

空间复杂度比较常用的有:O(1)、O(n)、O(n²),我们下面来看看:

  1. 空间复杂度 O(1)

如果算法执行所需要的临时空间不随着某个变量n的大小而变化,即此算法空间复杂度为一个常量,可表示为 O(1)

举例:

int i = 1;
int j = 2;
++i;
j++;
int m = i + j;

代码中的 i、j、m 所分配的空间都不随着处理数据量变化,因此它的空间复杂度 S(n) = O(1)

  1. 空间复杂度 O(n)

我们先看一个代码:

int[] m = new int[n]
for(i=1; i<=n; ++i)
{
   j = i;
   j++;
}

这段代码中,第一行new了一个数组出来,这个数据占用的大小为n,这段代码的2-6行,虽然有循环,但没有再分配新的空间,因此,这段代码的空间复杂度主要看第一行即可,即 S(n) = O(n)

posted @ 2021-04-19 19:18  北极星!  阅读(87)  评论(0编辑  收藏  举报