prometheus+grafana+nodeExporter监控服务器的表现

数据存储方:prometheus 时序数据库用来做数据收集;

数据发送方:nodeExporter 用来将日志打到promexxxxx上;

数据展示方:grafana用来做数据的展示;

数据报警方:alert Manager(这里没搞)

 

1.wget nodeExporter 到本地 ,解压后启动

 wget https://github.com/prometheus/node_exporter/releases/download/v0.18.1/node_exporter-0.18.1.linux-amd64.tar.gz --no-check-certificate
 tar -xf node_exporter-0.18.1.linux-amd64.tar.gz
  ./node_exporter

 

如果服务是通过docker启动的,cp文件到对应容器后启动

docker cp ../node_exporterxxxxxx <dockername>:/    

  

启动后访问 ip:9100/metrtics

node_cpu:系统CPU占用

node_disk*:磁盘io

node_filesystem*:文件系统用量

node_load1:系统负载

node_memory*:内存使用量

node_network*:网络带宽

node_time:当前系统时间

go_*:node exporter中go相关指标

process_*:node exporter自身进程相关运行指标 

 

 

 

2.编写prometheus的yml文件,启动docker的时候加载该yml配置文件。

vi prometheus.yml

nodeexporter 一定要装在服务器上。这里9100端口是我本地启动的mall-portal服务暴露的端口。

global:
  scrape_interval:     15s # By default, scrape targets every 15 seconds.
  evaluation_interval: 15s # Evaluate rules every 15 seconds.

scrape_configs:
  - job_name: prometheus
    static_configs:
      - targets: ['localhost:9090']
        labels:
          instance: prometheus

  - job_name: linux
    static_configs:
      - targets: ['47.112.188.174:9100']
        labels:
          instance: node
  - job_name: 'spring'
    static_configs:
	metrics_path: '/actuator/prometheus'
      - targets: ['47.112.188.174:8081']
  - job_name: consul
    consul_sd_configs:
      - server: ['47.112.188.174:8500']
	    services: []
    relabel_configs:
      - source_labels: [__meta_consul_tags]
        regex: .*mall.*
        action: keep
	  
		  
		  
		  

  

启动prometheus

docker run --name prometheus -d -p 9090:9090 --privileged=true -v /usr/local/dockerdata/prometheus/prometheus.yml:/etc/prometheus/prometheus.yml prom/prometheus --config.file=/etc/prometheus/prometheus.yml

 

可在9090端口查看prometheus的数据

http://47.112.188.174:9090/targets

 

 

 

http://47.112.188.174:9090/graph 里面可以查询

 

 

 

 

grafana 添加prometheus数据后查看

 

 

global:  scrape_interval:     15s # By default, scrape targets every 15 seconds.  evaluation_interval: 15s # Evaluate rules every 15 seconds.
scrape_configs:  - job_name: prometheus    static_configs:      - targets: ['localhost:9090']        labels:          instance: prometheus
  - job_name: linux    static_configs:      - targets: ['47.112.188.174:9100']        labels:          instance: node  - job_name: 'spring'    static_configs:metrics_path: '/actuator/prometheus'      - targets: ['47.112.188.174:8081']  - job_name: consul    consul_sd_configs:      - server: ['47.112.188.174:8500']    services: []    relabel_configs:      - source_labels: [__meta_consul_tags]        regex: .*mall.*        action: keep        

global:  scrape_interval:     15s # By default, scrape targets every 15 seconds.  evaluation_interval: 15s # Evaluate rules every 15 seconds.
scrape_configs:  - job_name: prometheus    static_configs:      - targets: ['localhost:9090']        labels:          instance: prometheus
  - job_name: linux    static_configs:      - targets: ['47.112.188.174:9100']        labels:          instance: node  - job_name: 'spring'    static_configs:metrics_path: '/actuator/prometheus'      - targets: ['47.112.188.174:8081']  - job_name: consul    consul_sd_configs:      - server: ['47.112.188.174:8500']    services: []    relabel_configs:      - source_labels: [__meta_consul_tags]        regex: .*mall.*        action: keep        

posted @ 2020-03-04 20:43  头鹰在学习  阅读(966)  评论(0编辑  收藏  举报