Logistic 回归梯度上升优化函数

In [183]:

 
 
 
 
 
def loadDataSet():
    dataMat = []
    labelMat = []
    fr = open('testSet.txt')
    for line in fr.readlines():
        lineArr = line.strip().split()
        dataMat.append([1.0,float(lineArr[0]),float(lineArr[1])])
        labelMat.append(int(lineArr[2]))
    return dataMat,labelMat
    
 
 
In [184]:
 
 
 
 
 
def sigmoid(inX):
    return 1.0/(1+exp(-inX))
 
 
 

批量梯度下降

In [185]:
 
 
 
 
 
def gradAscent(dataMatIn, classLabels):
    dataMatrix = mat(dataMatIn)
    labelMat = mat(classLabels).transpose()
    m,n = shape(dataMatrix)
    alpha = 0.001
    maxCycles = 500
    weights = ones((n,1))
    for k in range(maxCycles):
        h = sigmoid(dataMatrix*weights) #   h是一个矩阵
        error = (labelMat - h)
        weights = weights + alpha * dataMatrix.transpose() * error
    return weights 
 
 
 

随机梯度下降

In [186]:
 
 
 
 
 
def stocGradAscent0(dataMatrix, classLabels):
    m,n = shape(dataMatrix)
    alpha = 0.01
    weights = ones(n)
    #weights = [0.1,0.1,0.1]
    for i in range(m):
        h = sigmoid(sum(dataMatrix[i]*weights))#  h是一个数值
        print dataMatrix[i]
        print weights
        print dataMatrix[i]*weights
        error = classLabels[i] - h
        weights = weights + alpha * error * dataMatrix[i]
    return weights
 
 
 

sum()的参数是一个list 下面是改进的随机梯度上升算法:

In [187]:
 
 
 
 
 
def stocGradAscent1(dataMatrix, classLabels, numIter=150):
    m,n = shape(dataMatrix)
    weights = ones(n)
    #weights = [0.1,0.1,0.1]
    for j in range(numIter):
        dataIndex = range(m)
        for i in range(m):
            alpha = 4/(1.0+j+i)+0.01
            randIndex = int(random.uniform(0,len(dataIndex)))
            h = sigmoid(sum(dataMatrix[randIndex]*weights))#  h是一个数值
            error = classLabels[randIndex] - h
            weights = weights + alpha * error * dataMatrix[randIndex]
            del(dataIndex[randIndex])
    return weights
 
 
In [188]:
 
 
 
 
 
#import logRegres
 
 
In [189]:
 
 
 
 
 
dataArr,labelMat = loadDataSet()
 
 
In [190]:
 
 
 
 
 
#weights=gradAscent(dataArr,labelMat)
weights=stocGradAscent1(array(dataArr),labelMat,500)
 
 
In [191]:
 
 
 
 
 
def plotBestFit(wei):
    import matplotlib.pyplot as plt
    weights = wei
    dataMat,labelMat = loadDataSet()
    dataArr = array(dataMat)
    n = shape(dataArr)[0]
    xcord1 = []; ycord1 = []
    xcord2 = []; ycord2 = []
    for i in range(n):
        if int(labelMat[i])==1:
            xcord1.append(dataArr[i,1]);ycord1.append(dataArr[i,2])
        else:
            xcord2.append(dataArr[i,1]);ycord2.append(dataArr[i,2])
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.scatter(xcord1,ycord1,s=30,c='red',marker='s')
    ax.scatter(xcord2,ycord2,s=30,c='green')
    x = arange(-3.0,3.0,0.1)
    y = (-weights[0]-weights[1]*x)/weights[2]
    ax.plot(x,y)
    plt.xlabel('X1')
    plt.ylabel('X2')
    plt.show()
 
 
 

h = subplot(m,n,p)/subplot(mnp) 将figure划分为m×n块,在第p块创建坐标系,并返回它的句柄。当m,n,p<10时,可以简化为subplot(mnp)或者subplot mnp (注:subplot(m,n,p)或者subplot(mnp)此函数最常用:subplot是将多个图画到一个平面上的工具。其中,m表示是图排成m行,n表示图排成n列,也就是整个figure中有n个图是排成一行的,一共m行,如果第一个数字是2就是表示2行图。p是指你现在要把曲线画到figure中哪个图上,最后一个如果是1表示是从左到右第一个位置。 )

In [192]:
 
 
 
 
 
from numpy import *
#reload
print weights
plotBestFit(weights)
posted @ 2016-05-01 15:02  止战  阅读(794)  评论(0编辑  收藏  举报