Deal with relational data using libFM with blocks
原文:https://thierrysilbermann.wordpress.com/2015/09/17/deal-with-relational-data-using-libfm-with-blocks/
An answer for this question: [Example] Files for Block Structure
There is a quick explanation in the README doc here: libFM1.42 Manual
Quick explanation is case you don’t want to read this whole blog post.
I’ll take back the toy dataset I used in this previous blog post. Look at it to get the features meaning.
train.libfm
5 0:1 2:1 6:1 9:12.5
5 0:1 3:1 6:1 9:20
4 0:1 4:1 6:1 9:78
1 1:1 2:1 8:1 9:12.5
1 1:1 3:1 8:1 9:20
and test.libfm
0 1:1 4:1 8:1 9:78
0 0:1 5:1 6:1
And I’ll merge them, so it will be easier for the whole process
dataset.libfm
5 0:1 2:1 6:1 9:12.5
5 0:1 3:1 6:1 9:20
4 0:1 4:1 6:1 9:78
1 1:1 2:1 8:1 9:12.5
1 1:1 3:1 8:1 9:20
0 1:1 4:1 8:1 9:78
0 0:1 5:1 6:1
So if we wanted to use block structure.
We will have those 5 files first:
- rel_user.libfm (features 0,1 and 6-8 are users features)
0 0:1 6:10 1:1 8:1
but in fact you can avoid to have feature_id_number broken like that (0-1, 6-8), we can recompress it, so (0-1 -> 0-1 and 6-8 -> 2-4)
0 0:1 2:1
0 1:1 4:1
- rel_product.libfm (features 2-5 and 9 are products features) Same thing we can compress from:
0 2:1 9:12.50 3:1 9:200 4:1 9:780 5:1
to
0 0:1 4:12.5
0 1:1 4:20
0 2:1 4:78
0 3:1
- rel_user.train (which is now the mapping, the first 3 lines correspond to the first line of rel_user.libfm | /!\ we are using a 0 indexing)
0
0
0
1
1
- rel_product.train (which is now the mapping)
0
1
2
0
1
- file y.train which contains the ratings only
5
5
4
1
1
Almost done…
Now you need to create the .x and .xt files for the user block and the product block. For this you need the script available with libFM in /bin/ after you compile them.
./bin/convert –ifile rel_user.libfm –ofilex rel_user.x –ofiley rel_user.y
you are forced to used the flag –ofiley even if rel_user.y will never be used. You can delete it every time.
and then
./bin/transpose –ifile rel_user.x –ofile rel_user.xt
Now you can do the same thing for the test set, for test because we merge the train and test dataset at the beginning, we only need to generate rel_user.test, rel_product.test and y.test
At this point, you will have a lot of files: (rel_user.train, rel_user.test, rel_user.x, rel_user.xt, rel_product.train, rel_product.test, rel_product.x, rel_produt.xt, y.train, y.test)
And run the whole thing:
./bin/libFM -task r -train y.train -test y.test –relation rel_user,rel_product -out output
It’s a bit overkill for this problem but I hope you get the point.
Now a real example
For this example, I’ll use the ml-1m.zip MovieLens dataset that you can get from here (1 million ratings)
ratings.dat (sample) / Format: UserID::MovieID::Rating::Timestamp
1::1193::5::978300760
1::661::3::978302109
1::914::3::978301968
1::3408::4::978300275
1::2355::5::978824291
movies.dat (sample) / Format: MovieID::Title::Genres
1::Toy Story (1995)::Animation|Children’s|Comedy
2::Jumanji (1995)::Adventure|Children’s|Fantasy
3::Grumpier Old Men (1995)::Comedy|Romance
4::Waiting to Exhale (1995)::Comedy|Drama
users.dat (sample) / Format: UserID::Gender::Age::Occupation::Zip-code
1::F::1::10::48067
2::M::56::16::70072
3::M::25::15::55117
4::M::45::7::02460
5::M::25::20::55455
I’ll create 3 different models.
- Easiest libFM files to train without block. I’ll use those features: UserID, MovieID
- Regular libFM files to train without block. I’ll use those features: UserID, MovieID, Gender, Age, Occupation, Genre (of movie)
- libFM files to train with block. I’ll also use those features: UserID, MovieID, Gender, Age, Occupation, Genre (of movie)
Model 1 and 2 can be created using the following code:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
|
# -*- coding: utf-8 -*- __author__ = 'Silbermann Thierry' __license__ = 'WTFPL' import pandas as pd import numpy as np def create_libfm(w_filename, model_lvl = 1 ): # Load the data file_ratings = 'ratings.dat' data_ratings = pd.read_csv(file_ratings, delimiter = '::' , engine = 'python' , names = [ 'UserID' , 'MovieID' , 'Ratings' , 'Timestamp' ]) file_movies = 'movies.dat' data_movies = pd.read_csv(file_movies, delimiter = '::' , engine = 'python' , names = [ 'MovieID' , 'Name' , 'Genre_list' ]) file_users = 'users.dat' data_users = pd.read_csv(file_users, delimiter = '::' , engine = 'python' , names = [ 'UserID' , 'Genre' , 'Age' , 'Occupation' , 'ZipCode' ]) # Transform data ratings = data_ratings[ 'Ratings' ] data_ratings = data_ratings.drop([ 'Ratings' , 'Timestamp' ], axis = 1 ) data_movies = data_movies.drop([ 'Name' ], axis = 1 ) list_genres = [genres.split( '|' ) for genres in data_movies[ 'Genre_list' ]] set_genre = [item for sublist in list_genres for item in sublist] data_users = data_users.drop([ 'ZipCode' ], axis = 1 ) print 'Data loaded' # Map the data offset_array = [ 0 ] dict_array = [] feat = [( 'UserID' , data_ratings), ( 'MovieID' , data_ratings)] if model_lvl > 1 : feat.extend[( 'Genre' , data_users), ( 'Age' , data_users), ( 'Occupation' , data_users), ( 'Genre_list' , data_movies)] for (feature_name, dataset) in feat: uniq = np.unique(dataset[feature_name]) offset_array.append( len (uniq) + offset_array[ - 1 ]) dict_array.append({key: value + offset_array[ - 2 ] for value, key in enumerate (uniq)}) print 'Mapping done' # Create libFM file w = open (w_filename, 'w' ) for i in range (data_ratings.shape[ 0 ]): s = "{0}" . format (ratings[i]) for index_feat, (feature_name, dataset) in enumerate (feat): if dataset[feature_name][i] in dict_array[index_feat]: s + = " {0}:1" . format ( dict_array[index_feat][dataset[feature_name][i]] + offset_array[index_feat] ) s + = '\n' w.write(s) w.close() if __name__ = = '__main__' : create_libfm( 'model1.libfm' , 1 ) create_libfm( 'model2.libfm' , 2 ) |
So you end up with a file model1.libfm and model2.libfm. Just need to split each of those files in two to create a training et test set file that I’ll call train_m1.libfm, test_m1.libfm (same thing for model2, train_m2.libfm, test_m2.libfm)
Then you just run libFM like this:
./libFM -train train_m1.libfm -test test_m1.libfm -task r -iter 20 -method mcmc -dim ‘1,1,8’ -output output_m1
But I guess you already know how to do those.
Now the interesting part, using blocks.
[TODO]