机器学习中的Bias(偏差),Error(误差),和Variance(方差)有什么区别和联系?

 

原文:http://www.zhihu.com/question/20448464

5 个回答

 

原文:http://www.zhihu.com/question/27068705

机器学习中的Bias(偏差),Error(误差),和Variance(方差)有什么区别和联系?修改

最近在学习机器学习,在学到交叉验证的时候,有一块内容特别的让我困惑,Error可以理解为在测试数据上跑出来的不准确率 ,即为 (1-准确率)

在训练数据上面,我们可以进行交叉验证(Cross-Validation)。
一种方法叫做K-fold Cross Validation (K折交叉验证), K折交叉验证,初始采样分割成K个子样本,一个单独的子样本被保留作为验证模型的数据,其他K-1个样本用来训练。交叉验证重复K次,每个子样本验证一次,平均K次的结果或者使用其它结合方式,最终得到一个单一估测。

当K值大的时候, 我们会有更少的Bias(偏差), 更多的Variance。
当K值小的时候, 我们会有更多的Bias(偏差), 更少的Variance。

我十分不理解上述的描述,求大神来解释到底什么是Bias, Error,和Variance?
交叉验证,对于这三个东西到底有什么影响?修改
举报
添加评论 
分享
 • 邀请回答
 
按投票排序按时间排序

12 个回答

posted @ 2015-11-28 12:04  止战  阅读(5058)  评论(0编辑  收藏  举报