李航博士:浅谈我对机器学习的理解
原文:http://www.itongji.cn/article/06294DH015.html
机器学习方法非常多,也很成熟。下面我挑几个说。
首先是SVM。因为我做的文本处理比较多,所以比较熟悉SVM。SVM也叫支持向量机,其把数据映射到多维空间中以点的形式存在,然后找到能够分 类的最优超平面,最后根据这个平面来分类。SVM能对训练集之外的数据做很好的预测、泛化错误率低、计算开销小、结果易解释,但其对参数调节和核函数的参 数过于敏感。个人感觉SVM是二分类的最好的方法,但也仅限于二分类。如果要使用SVM进行多分类,也是在向量空间中实现多次二分类。
SVM有一个核心函数SMO,也就是序列最小最优化算法。SMO基本是最快的二次规划优化算法,其核心就是找到最优参数α,计算超平面后进行分类。SMO方法可以将大优化问题分解为多个小优化问题求解,大大简化求解过程。
SVM还有一个重要函数是核函数。核函数的主要作用是将数据从低位空间映射到高维空间。详细的内容我就不说了,因为内容实在太多了。总之,核函数可以很好的解决数据的非线性问题,而无需考虑映射过程。
第二个是KNN。KNN将测试集的数据特征与训练集的数据进行特征比较,然后算法提取样本集中特征最近邻数据的分类标签,即KNN算法采用测量不同特征值 之间的距离的方法进行分类。KNN的思路很简单,就是计算测试数据与类别中心的距离。KNN具有精度高、对异常值不敏感、无数据输入假定、简单有效的特 点,但其缺点也很明显,计算复杂度太高。要分类一个数据,却要计算所有数据,这在大数据的环境下是很可怕的事情。而且,当类别存在范围重叠时,KNN分类 的精度也不太高。所以,KNN比较适合小量数据且精度要求不高的数据。
KNN有两个影响分类结果较大的函数,一个是数据归一化,一个是距离计算。如果数据不进行归一化,当多个特征的值域差别很大的时候,最终结果就 会受到较大影响;第二个是距离计算。这应该算是KNN的核心了。目前用的最多的距离计算公式是欧几里得距离,也就是我们常用的向量距离计算方法。
个人感觉,KNN最大的作用是可以随时间序列计算,即样本不能一次性获取只能随着时间一个一个得到的时候,KNN能发挥它的价值。至于其他的特点,它能做的,很多方法都能做;其他能做的它却做不了。
第三个就是Naive Bayes了。Naive Bayes简称NB(牛X),为啥它牛X呢,因为它是基于Bayes概率的一种分类方法。贝叶斯方法可以追溯到几百年前,具有深厚的概率学基础,可信度非 常高。Naive Baye中文名叫朴素贝叶斯,为啥叫“朴素”呢?因为其基于一个给定假设:给定目标值时属性之间相互条件独立。比如我说“我喜欢你”,该假设就会假定 “我”、“喜欢”、“你”三者之间毫无关联。仔细想想,这几乎是不可能的。马克思告诉我们:事物之间是有联系的。同一个事物的属性之间就更有联系了。所 以,单纯的使用NB算法效率并不高,大都是对该方法进行了一定的改进,以便适应数据的需求。
NB算法在文本分类中用的非常多,因为文本类别主要取决于关键词,基于词频的文本分类正中NB的下怀。但由于前面提到的假设,该方法对中文的分类效果不 好,因为中文顾左右而言他的情况太多,但对直来直去的老美的语言,效果良好。至于核心算法嘛,主要思想全在贝叶斯里面了,没啥可说的。
第四个是回归。回归有很多,Logistic回归啊、岭回归啊什么的,根据不同的需求可以分出很多种。这里我主要说说Logistic回归。为啥呢?因为 Logistic回归主要是用来分类的,而非预测。回归就是将一些数据点用一条直线对这些点进行拟合。而Logistic回归是指根据现有数据对分类边界 线建立回归公式,以此进行分类。该方法计算代价不高,易于理解和实现,而且大部分时间用于训练,训练完成后分类很快;但它容易欠拟合,分类精度也不高。主 要原因就是Logistic主要是线性拟合,但现实中很多事物都不满足线性的。即便有二次拟合、三次拟合等曲线拟合,也只能满足小部分数据,而无法适应绝 大多数数据,所以回归方法本身就具有局限性。但为什么还要在这里提出来呢?因为回归方法虽然大多数都不合适,但一旦合适,效果就非常好。
Logistic回归其实是基于一种曲线的,“线”这种连续的表示方法有一个很大的问题,就是在表示跳变数据时会产生“阶跃”的现象,说白了就 是很难表示数据的突然转折。所以用Logistic回归必须使用一个称为“海维塞德阶跃函数”的Sigmoid函数来表示跳变。通过Sigmoid就可以 得到分类的结果。
为了优化Logistic回归参数,需要使用一种“梯度上升法”的优化方法。该方法的核心是,只要沿着函数的梯度方向搜寻,就可以找到函数的最佳 参数。但该方法在每次更新回归系数时都需要遍历整个数据集,对于大数据效果还不理想。所以还需要一个“随机梯度上升算法”对其进行改进。该方法一次仅用一 个样本点来更新回归系数,所以效率要高得多。
第五个是决策树。据我了解,决策树是最简单,也是曾经最常用的分类方法了。决策树基于树理论实现数据分类,个人感觉就是数据结构中的B+树。决策树是一个 预测模型,他代表的是对象属性与对象值之间的一种映射关系。决策树计算复杂度不高、输出结果易于理解、对中间值缺失不敏感、可以处理不相关特征数据。其比 KNN好的是可以了解数据的内在含义。但其缺点是容易产生过度匹配的问题,且构建很耗时。决策树还有一个问题就是,如果不绘制树结构,分类细节很难明白。 所以,生成决策树,然后再绘制决策树,最后再分类,才能更好的了解数据的分类过程。
决策树的核心树的分裂。到底该选择什么来决定树的分叉是决策树构建的基础。最好的方法是 利用信息熵实现 。熵这个概念很头疼,很容易让人迷糊,简单来说就是信息的复杂程度。信息越多,熵越高。所以决策树的核心是通过计算信息熵划分数据集。
我还得说一个比较特殊的分类方法:AdaBoost。AdaBoost是boosting算法的代表分类器。boosting基于元算法(集成算 法)。即考虑其他方法的结果作为参考意见,也就是对其他算法进行组合的一种方式。说白了,就是在一个数据集上的随机数据使用一个分类训练多次,每次对分类 正确的数据赋权值较小,同时增大分类错误的数据的权重,如此反复迭代,直到达到所需的要求。AdaBoost泛化错误率低、易编码、可以应用在大部分分类 器上、无参数调整,但对离群点敏感。该方法其实并不是一个独立的方法,而是必须基于元方法进行效率提升。个人认为,所谓的“AdaBoost是最好的分类 方法”这句话是错误的,应该是“AdaBoost是比较好的优化方法”才对。