聊聊大数据框架的数据更新解决方案: COW, MOR, MOW

大数据框架下,常用的数据更新策略有三种:

COW: copy-on-write, 写时复制;

MOR: merge-on-read, 读时合并;

MOW: merge-on-write, 写时合并;

hudi等数据湖仓框架,常用的是前两种实现数据更新。而Doris则主要用后两种更新数据。

COW

在数据写入的时候,复制一份原来的拷贝,在其基础上添加新数据,创建数据文件的新版本。新版本文件包括旧版本文件的记录以及来自传入批次的记录(全量最新)。

正在读数据的请求,读取的是最近的完整副本,这类似Mysql 的MVCC的思想。

在java的类库中就有一个CopyOnWriteArrayList,而linux的fork子进程的内部机制也是通过COW实现。可以说,COW是比较常用的数据更新方案。

MOR

新插入的数据存储在delta log 中,定期再将delta log合并进行parquet数据文件(也可以理解为base文件)。读取数据时,会将delta log跟base文件做merge。

以Apache Doris中Merge On Read更新机制在Aggregate数据模型中的实现逻辑为例:

  1. 当数据写入 Doris 时,首先会进入内存中的 MemTable。
  2. 当 MemTable 达到一定大小后,会触发刷新(Flush)操作,将内存中的数据写入到磁盘上的 Segment 文件中。这个过程会生成一个新的 Segment 文件,并更新元数据中的文件列表。
  3. 当用户执行查询操作时,Doris 会根据查询条件读取相关的 Segment 文件。在读取数据的同时,Doris 会检查这些数据是否需要与 MemTable 中的数据进行合并。

这个merge的过程一般是多路归并排序的实现:查询时将重复的 Key 排在一起,并进行聚合操作,其中高版本 Key 的会覆盖低版本的 Key,最终只返回给用户版本最高的那一条记录。

hudi中,数据表的存储类型主要是MOR,参考: Hudi-表的存储类型及比较

MOW

将被覆盖和被更新的数据进行标记删除,同时将新的数据写入新的文件。在查询的时候, 所有被标记删除的数据都会在文件级别被过滤掉,读取出来的数据就都是最新的数据,消除掉了读时合并中的数据聚合过程,并且能够在很多情况下支持多种谓词的下推。

别的大数据框架我没有查到相关的信息,这个的应用主要是在Doris的Unique数据模型中,即通过MOW实现了Unique数据模型下的数据更新。

Doris的MOW的实现方案是: Delete + Insert。即在数据写入时通过一个主键索引查找到被覆盖的 Key,将其标记为删除。 参考自微软的 SQL Server 在 2015 年 VLDB 上发表的论文《Real-Time Analytical Processing with SQL Server》中提出的方案。

Delete + Insert

这篇论文提出了数据写入时将旧的数据标记删除(使用一个 Delete Bitmap 的数据结构),并将新数据记录在 Delta Store 中,查询时将 Base 数据、Delete Bitmap、Delta Store 中的数据 Merge 起来以得到最新的数据。整体方案如下图所示

1.png

其优点是,任何一个有效的主键只存在于一个地方(要么在 Base Data 中,要么在 Delta Store 中),这样就避免了查询过程中的大量归并排序的消耗,同时 Base 数据中的各种丰富的列存索引也仍然有效。

简单来讲,Merge-On-Write 的处理流程是:

  1. 对于每一条 Key,查找它在 Base 数据中的位置(rowsetid + segmentid + 行号)
  2. 如果 Key 存在,则将该行数据标记删除。标记删除的信息记录在 Delete Bitmap中,其中每个 Segment 都有一个对应的 Delete Bitmap
  3. 将更新的数据写入新的 Rowset 中,完成事务,让新数据可见(能够被查询到)
  4. 查询时,读取 Delete Bitmap,将被标记删除的行过滤掉,只返回有效的数据

总结

之所以会有这篇文章,主要是想总结一下大数据框架下常用的(准实时/实时)数据更新的常用解决方案,毕竟解决方案是通用的,只是实现方式会有差异。

关于更详细的内容与实现,请参考:

10x 查询性能提升,全新 Unique Key 的设计与实现

cow、mor与mow

posted @ 2023-12-06 11:25  又见阿郎  阅读(760)  评论(0编辑  收藏  举报