博弈

(一)巴什博弈(Bash Game):

只有一堆n个物品,两个人轮流取,每次最少取一个,最多取m个,最后取完物品者得胜。

若有A,B两人,若A先取,在双方都选择最优时,A能否取胜。

若 n%(m+1)!=0则先取者A必胜,因为第一次A先取走n%(m+1)个剩下的是(m+1)的倍数

因最多只能去m个因此B若去走K个则A可以取走( m+1-k)个他们取走的和为( m+1)

则每次剩下的都是(m+1)的倍数,因此A必胜

 

(二)威佐夫博弈(Wythoff Game):

有两堆若干物品,两个人轮流从某一堆或同时从两堆中取走同样多的物品,规定每次至少取一个,

多者不限,最后取光者胜利。

若有A,B两人,A先取

A面对(0,0),A是输的,我们称这种局势为奇异局势。前几个奇异局势是:(0,0),(1,2),(3,5),(4,7),(6,10)。

可以容易看出  a0 == b0 == 0,  ak是没有在前面出现过的最小自然数 bk=ak+k(k是下标)

有一个公式可以判断给定的数  a,b是不是奇异局势:

k = b -a;

if(a==[k*(1+sqrt(5))/2])则是奇异局势

否则不是

例题:POJ 1067

 

(三)尼姆博弈(Nimm Game):有三堆若干物品,两个人轮流从某一堆任取若干物品,规定:每次至少取一个,多者不限,

最后取光着胜利。

判断公式:

对于任意奇异局势(a,b,c),都有a^b^c==0

若对于非奇异局势(a,b,c)(a<b<c)转换为奇异局势,只需将 c 变为 a^b;

http://www.freopen.com/?p=10512

 POJ 2234,POJ 3480

posted @ 2012-04-11 20:36  知行执行  阅读(193)  评论(0编辑  收藏  举报