朴素贝叶斯python代码实现(西瓜书)

朴素贝叶斯python代码实现(西瓜书)

摘要:

朴素贝叶斯也是机器学习中一种非常常见的分类方法,对于二分类问题,并且数据集特征为离散型属性的时候,
使用起来非常的方便。原理简单,训练效率高,拟合效果好。

朴素贝叶斯

贝叶斯公式:

朴素贝叶斯之所以称这为朴素,是因为假设了各个特征是相互独立的,因此假定下公式成立:

则朴素贝叶斯算法的计算公式如下:

在实际计算中,上面的公式会做如下略微改动:

  1. 由于某些特征属性的值P(Xi|Ci)可能很小,多个特征的p值连乘后可能被约等于0。可以公式两边取log然后变乘法为加法,避免类乘问题。
  2. P(Ci) 和P(Xi|Ci) 一般不直接使用样本的频率计算出来,一般会使用拉普拉斯平滑。

上面公式中,Dc为该类别的频数,N表示所有类别的可能数。

上面公式中,Dc,xi为该特征对应属性的频数,Dc为该类别的频数,Ni表示该特征的可能的属性数。

对应的西瓜书数据集为

色泽	根蒂	敲声	纹理	脐部	触感	好瓜
青绿	蜷缩	浊响	清晰	凹陷	硬滑	是
乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	是
乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是
青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
浅白	蜷缩	浊响	清晰	凹陷	硬滑	是
青绿	稍蜷	浊响	清晰	稍凹	软粘	是
乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
青绿	硬挺	清脆	清晰	平坦	软粘	否
浅白	硬挺	清脆	模糊	平坦	硬滑	否
浅白	蜷缩	浊响	模糊	平坦	软粘	否
青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否
浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
乌黑	稍蜷	浊响	清晰	稍凹	软粘	否
浅白	蜷缩	浊响	模糊	平坦	硬滑	否
青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	否

python实现

#encoding:utf-8

import pandas as pd
import numpy  as np

class NaiveBayes:
    def __init__(self):
        self.model = {}#key 为类别名 val 为字典PClass表示该类的该类,PFeature:{}对应对于各个特征的概率
    def calEntropy(self, y): # 计算熵
        valRate = y.value_counts().apply(lambda x : x / y.size) # 频次汇总 得到各个特征对应的概率
        valEntropy = np.inner(valRate, np.log2(valRate)) * -1
        return valEntropy

    def fit(self, xTrain, yTrain = pd.Series()):
        if not yTrain.empty:#如果不传,自动选择最后一列作为分类标签
            xTrain = pd.concat([xTrain, yTrain], axis=1)
        self.model = self.buildNaiveBayes(xTrain) 
        return self.model
    def buildNaiveBayes(self, xTrain):
        yTrain = xTrain.iloc[:,-1]
        
        yTrainCounts = yTrain.value_counts()# 频次汇总 得到各个特征对应的概率

        yTrainCounts = yTrainCounts.apply(lambda x : (x + 1) / (yTrain.size + yTrainCounts.size)) #使用了拉普拉斯平滑
        retModel = {}
        for nameClass, val in yTrainCounts.items():
            retModel[nameClass] = {'PClass': val, 'PFeature':{}}

        propNamesAll = xTrain.columns[:-1]
        allPropByFeature = {}
        for nameFeature in propNamesAll:
            allPropByFeature[nameFeature] = list(xTrain[nameFeature].value_counts().index)
        #print(allPropByFeature)
        for nameClass, group in xTrain.groupby(xTrain.columns[-1]):
            for nameFeature in propNamesAll:
                eachClassPFeature = {}
                propDatas = group[nameFeature]
                propClassSummary = propDatas.value_counts()# 频次汇总 得到各个特征对应的概率
                for propName in allPropByFeature[nameFeature]:
                    if not propClassSummary.get(propName):
                        propClassSummary[propName] = 0#如果有属性灭有,那么自动补0
                Ni = len(allPropByFeature[nameFeature])
                propClassSummary = propClassSummary.apply(lambda x : (x + 1) / (propDatas.size + Ni))#使用了拉普拉斯平滑
                for nameFeatureProp, valP in propClassSummary.items():
                    eachClassPFeature[nameFeatureProp] = valP
                retModel[nameClass]['PFeature'][nameFeature] = eachClassPFeature

        return retModel
    def predictBySeries(self, data):
        curMaxRate = None
        curClassSelect = None
        for nameClass, infoModel in self.model.items():
            rate = 0
            rate += np.log(infoModel['PClass'])
            PFeature = infoModel['PFeature']
            
            for nameFeature, val in data.items():
                propsRate = PFeature.get(nameFeature)
                if not propsRate:
                    continue
                rate += np.log(propsRate.get(val, 0))#使用log加法避免很小的小数连续乘,接近零
                #print(nameFeature, val, propsRate.get(val, 0))
            #print(nameClass, rate)
            if curMaxRate == None or rate > curMaxRate:
                curMaxRate = rate
                curClassSelect = nameClass
            
        return curClassSelect
    def predict(self, data):
        if isinstance(data, pd.Series):
            return self.predictBySeries(data)
        return data.apply(lambda d: self.predictBySeries(d), axis=1)

dataTrain = pd.read_csv("xiguadata.csv", encoding = "gbk")

naiveBayes = NaiveBayes()
treeData = naiveBayes.fit(dataTrain)

import json
print(json.dumps(treeData, ensure_ascii=False))

pd = pd.DataFrame({'预测值':naiveBayes.predict(dataTrain), '正取值':dataTrain.iloc[:,-1]})
print(pd)
print('正确率:%f%%'%(pd[pd['预测值'] == pd['正取值']].shape[0] * 100.0 / pd.shape[0]))

输出

{"否": {"PClass": 0.5263157894736842, "PFeature": {"色泽": {"浅白": 0.4166666666666667, "青绿": 0.3333333333333333, "乌 黑": 0.25}, "根蒂": {"稍蜷": 0.4166666666666667, "蜷缩": 0.3333333333333333, "硬挺": 0.25}, "敲声": {"浊响": 0.4166666666666667, "沉闷": 0.3333333333333333, "清脆": 0.25}, "纹理": {"稍糊": 0.4166666666666667, "模糊": 0.3333333333333333, "清晰": 0.25}, "脐部": {"平坦": 0.4166666666666667, "稍凹": 0.3333333333333333, "凹陷": 0.25}, "触感": {"硬滑": 0.6363636363636364, "软粘": 0.36363636363636365}}}, "是": {"PClass": 0.47368421052631576, "PFeature": {"色泽": {"乌黑": 0.45454545454545453, "青绿": 0.36363636363636365, "浅白": 0.18181818181818182}, "根蒂": {"蜷缩": 0.5454545454545454, "稍蜷": 0.36363636363636365, "硬挺": 0.09090909090909091}, "敲声": {"浊响": 0.6363636363636364, "沉闷": 0.2727272727272727, "清脆": 0.09090909090909091}, "纹理": {"清晰": 0.7272727272727273, "稍糊": 0.18181818181818182, "模糊": 0.09090909090909091}, "脐 部": {"凹陷": 0.5454545454545454, "稍凹": 0.36363636363636365, "平坦": 0.09090909090909091}, "触感": {"硬滑": 0.7, "软粘": 0.3}}}}
   预测值 正取值
0    是   是
1    是   是
2    是   是
3    是   是
4    是   是
5    是   是
6    否   是
7    是   是
8    否   否
9    否   否
10   否   否
11   否   否
12   是   否
13   否   否
14   是   否
15   否   否
16   否   否
正确率:82.352941%

总结:

  • 贝叶斯分类器是一种生成式模型,不是直接拟合分类结果,而是拟合出后验概率公式计算对应分类的概率。
  • 本文只介绍了二分类,也可以用来处理多分类问题。
  • 对于小规模数据集,表现良好。
  • 建立在特征相互独立的假设上。
  • 这是我的github主页https://github.com/fanchy,有些有意思的分享。
posted @ 2019-08-23 20:12  知然  阅读(13320)  评论(0编辑  收藏  举报